Вычисление тока по мощности: Как рассчитать силу тока, рассчитать мощность, ампераж

Содержание

Как вычислить мощность тока — Морской флот

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой. Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).

Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Что такое мощность электрического тока

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:

S=UI

Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.

P=UIcosФ

Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.

Q=UIsinФ

Или выразить из этого выражения:

И отсюда вычислить искомую величину.

Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:

А зная Uлинейное:

1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.

Тогда по аналогии чтобы найти P активную:

Определить реактивную мощность можно:

На этом теоретические сведения заканчиваются и мы перейдём к практике.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Заключение

Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Также читают:

Как рассчитать силу тока, рассчитать мощность, ампераж

1 Особенности конструкции

Основа конструкции любого предохранителя – заменяемый патрон с плавким элементом, который устанавливают на опорных изоляторах. Для механического и электрического соединения используют специальные контакты, выполненные из различных материалов.

Патрон представляет собой цилиндр из специального фарфора, устойчивого к кратковременному воздействию высоких температур. На торцах цилиндра устанавливают металлические колпачки, соединенные между собой плавкой вставкой, изготовленной из электротехнической меди или нихрома в зависимости от типа модели.

Внутреннее пространство корпуса патрона заполняют кварцевым песком высокой степени очистки, размер фракций и химический состав которого строго регламентированы нормативными документами. Его функция заключается в гашении электрической дуги, возникающей при срабатывании предохранителя.

Конструкция аппарата может включать в себя ударное устройство и указатель срабатывания, который выполняет функцию индикатора.

2 Применение

Высоковольтные предохранители используют на предприятиях энергетики, металлургии, машиностроения, горнодобывающих производствах, объектах атомных электростанций, в железнодорожном транспорте и жилищно-коммунальных хозяйствах. Подобные коммутационные аппараты устанавливают:

  • на комплектных трансформаторных подстанциях;
  • непосредственно на строительных конструкциях;
  • в главные распределительные щиты;
  • сборные камеры одностороннего обслуживания;
  • конденсаторные установки.

3 Основные характеристики

К основным характеристикам предохранителей в электроустановках выше 1000 В относят:

  • номинальную силу тока;
  • номинальный ток отключения;
  • номинальный ток основания;
  • номинальное напряжение;
  • габаритные размеры;
  • климатическое исполнение.

Для упрощения идентификации изделия производители наносят на корпус маркировку, выполненную методом тампопечати.

На маркетплейсе Getenergo можно купить предохранители, изготовленные известными производителями электротехнической продукции. Удачного выбора!

Способ расчета показателя силы тока при выборе нужного сечения проводов

Наша компания предоставляет услуги по разработке электропроекта в квартирах. Мы подготовили для Вас эту статью с полезной информацией. Надеемся, что Вам она пригодится.

В течение реализации электропроекта, чтобы вычислить возможную потерю напряжения, необходимо обязательно знать такие величины, как нагрузка и длина всех отдельных участков в сети. Только после этого можно будет непосредственно начинать проектирование расположения электрической сети. С имеющимися показателями составляется расчетная схема. Она различна для 3-фазных сетей и 1-фазных.

В первом случае вычисленная нагрузка сети делится на три части, которые распределяются одинаково по 3-м фазам. Однако на практике не всегда получается распределить нагрузку равномерно. Точнее всего это можно сделать с сетями, в которых работают 3-фазные двигатели. Если же в них применяются 1-фазные потребители, то сделать это намного сложнее. Такие сети с 3-фазными двигателями устанавливаются в городских системах снабжения электричеством потребителей. В них обычно действуют 1-фазные приемники электричества, поэтому в расчете нагрузки, поделенной на три равные части, всегда есть небольшие отклонения. Но во время проектирования устанавливаются равные части показателя нагрузки. Такой подход позволяет упростить процесс проектирования.

Обычно делается расчетная схема только на одну линейную часть сети, т.е. на одну фазу. Показатели к остальным фазам берутся, как равносильные. В схеме обозначаются дополнительно места монтирования плавких предохранителей и аппаратов защиты сети от возможных сбоев и аварийных ситуаций.

Кроме всего этого во время проектирования электрической сети нужно обязательно учитывать особенность плана здания и разреза его помещений. Это необходимо потому, что в некоторых помещениях ранее уже была установлена электропроводка. На ней обычно указываются электротоки и мощность подключаемых приборов, в число которых входят розетки, осветительные приборы и т.п.

Способ расчета силы тока во время составления проекта базируется на уже существующем плане жилого населенного пункта или производственного предприятия. На нем обозначаются все точки включения разных групп электроприемников. Это могут быть отдельные дома, или просто знания производственного предприятия. При отсутствии такого плана невозможно сделать точный проект проектирования электросети. От этого в последующем зависит качество проведения электромонтажных работ.

На схеме длина отдельного участка электросети помечается согласно выбранному масштабу плана в целом. Если же чертежа нет, то тогда длины отдельных участков сети помечаются в реальном размере. Только в таком случае можно составить проект электросети без погрешностей.

Когда записывается расчетная схема электросети, соблюдать масштабирование, при нанесении на нее участков сети, не обязательно. Главное, чтобы верно были нанесены участки соединения отрезков электросети.

Рисунок A

На рисунке А показан пример схемы электрической линии наружного монтажа. По ней доставляется ток в населенный пункт силой в 380/220В. На ней начерчены участки сети, которые измеряются в метрах. Они располагаются, как слева, так и сверху. Показана и нагрузка с помощью стрелок вправо и вниз. На них указаны расчетные мощности. Их измеряют в киловаттах.

На приведенном примере схемы главной, магистральной линией является отрезок АБВ. От него идут ответвления. Это отрезки ВЕ, БД, ВГ.

Вычисление расчетных мощностей электросети

Вычисление расчетных мощностей электросети (нагрузок) достаточно сложная работа. Она выполняется, как при создании проекта «с нуля», так и во время реконструкции объекта и его сетей. Каждый из подключенных приборов (люстра, телевизор, холодильник и т.д.) берут от сети определенное номинальное число мощности при заданном номинальном значении напряжения на зажимах. Данная мощность берется за расчетную величину для конкретного приемника электричества. Потом осуществляется определение значения расчетной мощности для электродвигателя сети. Данная работа намного сложнее, чем предыдущая. Полученный верный результат зависит от крутящегося момента. Он связан с двигателем подключаемых механизмов, в число которых входят вентилятор, станок и транспортер. Вычисленная номинальная мощность помечается на корпусе двигателя. Данный показатель отличается от фактически существующей мощности. Получается, что, например, нагрузка токарного станка число не константное. Оно меняется от толщины стружки, которая снимается с детали, а также от размера объекта обработки.

Вычисление расчетной мощности двигателя является трудной задачей еще и потому, что в ходе работы следует принимать во внимание количество возможно подсоединенных приемников электричества. А это играет важную роль в ходе проведения электромонтажных работ.

Примером тому выступает высчитывание нагрузки для электросети, которая предназначена для обеспечения энергией мастерской. Там функционируют тридцать электрических двигателей. Часть из них всегда работают без остановки. К ним относят двигатели вентиляторов. А вот двигатели станков работают в режиме с определенными перерывами. Часть из них вообще функционируют с неполной нагрузкой. Поэтому расчетная мощность сети в этой ситуации признается за переменную величину. Всегда берется данное значение с запасом, т.

е. максимальный показатель. После определяется максимальный средний показатель за промежуток времени, равный тридцати минутам.

Формула расчета мощности электрических приемников, определяемой в кВт.

Р = Кс х Ру

Кc – коэффициент, показывающий величину спроса при максимально возможной нагрузке. Данный показатель рассчитывается при максимальном числе приемников. Если определяется коэффициент двигателя, то необходимо обязательно рассчитывать нагрузку приемников каждого в отдельности.

Py – мощность определенной группы электрических приемников, которая узнается путем сложения номинальной мощности всех приемников. Рассчитывается в кВт.

Вычисление показателя расчетного тока электрической линии, как для одного приемника, так и для группы.

Когда предстоит задача отобрать диаметр сечения электрического прибора, тогда нужно обязательно выяснить и размер расчетного тока. Определяется два показателя. Один базируется на показателе плотности, а другой на условиях нагревания.

Формула вычисления расчетного тока 3-х фазного электрического приемника.

Где Р – нагрузка приемника, рассчитываемая в кВт.

Un- величина номинального напряжения приемника в комплекте с зажимами. Определяется, как величина линейного, межфазного напряжения в сети
Cos ? — константная величина мощности приемника.

Выше представленная формула используется для расчета мощности тока из группы однофазных или 3-х фазных приемников. Ко всему этому прилагается условие того, все имеющиеся приемники подсоединяются в одинаковых размерах к каждой отдельной фазе из трех возможных. Есть же специальная формула расчета мощности для 1-фазного приемника или нескольких, образующих группу, подсоединенных только к одной фазе 3-фазной сети.

Uнф – значение номинального напряжения каждого отдельного приемника, которое равно показателю фазного напряжения сети. В этом месте и осуществляется подсоединение приемников. Вычисляется значение в ваттах.

Cos ? — константная величина мощности приемника. Для лампочек света и нагревательных приборов данное значение равно единице. Это делает процесс расчета быстрее и проще. 
Вычисление тока по существующей расчетной схеме электросети

Для примера берем электросеть небольшого жилого поселка. Она изображена на рисунке А. На нем расчетная нагрузка каждого отдельного дома, которая присоединяется к общей линии электросети, изображается с помощью стрелок. В конце стрелки написано значение, высчитанное в киловаттах. Чтобы создать проект проведения электричества в жилой поселок и отобрать необходимый диаметр сечения проводов, нужно вычислить нагрузку на все имеющиеся участки.

Расчет производится на базе первого закона Кирхгофа. Он говорит, что для любой точки электросети общая сумма поступающих токов может быть равна суммарному значению всех выходящих токов. Этот закон используется только для расчета нагрузок, выраженных в киловаттах.

Пример

Требуется найти наилучший, с точки зрения оптимальности, вариант распределения нагрузки по разным участкам электрической линии. Так на участке, длина которого равна восьмидесяти метров, в самой завершающей точке Г, где происходит вход его в общую сеть, нагрузка равна девяти киловаттам. На ответвлении в сорок метров нагрузка уже рассчитывается путем сложения нагрузок от домов, примыкающих к конечной точке ответвления ВГ. Т.е. 9+6=15 кВт. Чуть далее, на расстоянии в пятьдесят метров, нагрузка в точке В уже равна сумме трех показателей, а именно 15+4+5=24 кВт.

Таким же способом происходит расчет и всех оставшихся участков электросети. Чтобы сделать работу проще и быстрее, все вышеперечисленные значения указываются в строго определенном порядке. На рисунке А величины длины участков электролинии отмечаются в порядке слева и сверху, а нагрузка – справа и снизу. И наконец, любое проектирование электросети обязательно должно учитывать токи в электроустановочных зданиях, где происходит утечка.

Задание

Например, в ситуации с мастерской, 4-хпроводная электролиния, характеризуемая напряжением в 380/220В, осуществляет питание 30 электрических двигателей. Получается, что сумма мощностей равна сорока восьми киловаттам. Т.е. Py1 = 48 кВт. Сумма мощностей лампочек для света равна двум киловаттам. Ру2 = 2 кВт. Константное значение на спрос для осветительной и силовой нагрузки равно соответственно Кс2=0,9 и Кс1=0,35. Среднее константное значение мощности для всей в целом установки равно cos ф=0,75. Вопрос: вычислить расчетный ток электролинии.

Решение

Сначала производим расчет нагрузки электрических двигателей.

P1 = 0,35 х 48 =16,8 кВт

Далее рассчитываем расчетную нагрузку для осветительных приборов.

Р2=0,9 х 2=1,8 кВт.

Теперь считаем конечную сумму мощностей.

Р= 16,8 + 1,8= 18,6 кВт.

Итого, расчетный ток вычисляем по формуле

Вычислив приблизительное значение расчетного тока, можно проверить правильность создания проекта прокладывания электросети и проведения монтажных работ.

Онлайн калькулятор закона Ома для участка цепи

Рад приветствовать тебя, дорогой читатель, в этой первой статье моего блога! Ее я посвятил самому основному закону, который должен хорошо понимать современный человек, работающий с электричеством.

Мой онлайн калькулятор закона Ома создан для участка цепи. Он значительно облегчает электротехнические расчеты в домашней проводке, подходит для цепей переменного и постоянного тока.

Им просто пользоваться: прочти правила ввода данных и работай!

Содержание статьи

Правила работы на калькуляторе

В быту нас интересуют, как правило, четыре взаимосвязанных характеристики электричества:

  1. напряжение;
  2. ток;
  3. сопротивление;
  4. или мощность.

Если тебе известны две величины, входящие в закон Ома (U, R, I), то вводи их в соответствующие строки, а оставшийся параметр и мощность будут вычислены автоматически.

Будь внимательным, чтобы не допустить ошибки.

Все значения надо заполнять в одной размерности: амперы, вольты, омы, ватты без использования обозначений дольности или кратности.

Осуществить переход к ним тебе поможет наглядная таблица.

Онлайн калькулятор закона Ома

Простые примеры расчета

Бытовая сеть переменного тока

Пример №1. Проверка ТЭНа.

В стиральную машину встроен трубчатый электронагреватель 1,25 кВт на 220 вольт. Требуется проверить его исправность замером сопротивления.
По мощности рассчитываем ток и сопротивление.

I = 1250 / 220 = 5,68 А; R = 220 / 5,68 = 38,7 Ом.

Проверяем расчет сопротивления калькулятором по току и напряжению. Данные совпали. Можно приступать к электрическим замерам.

Пример №2. Проверка сопротивления двигателя

Допустим, что мы купили моющий пылесос на 1,6 киловатта для уборки помещений. Нас интересует ток его потребления и сопротивление электрического двигателя в рабочем состоянии. Считаем ток:

I = 1600 / 220 = 7,3 А.

Вводим в графы калькулятора напряжение 220 вольт и ток 7,3 ампера. Запускаем расчет. Автоматически получим данные:

  • сопротивление двигателя — 30,1 Ома;
  • мощность 1600 ватт.

Цепи постоянного тока

Рассчитаем сопротивление нити накала галогенной лампочки на 55 ватт, установленной в фаре автомобиля на 12 вольт.

Считаем ток:

I = 55 / 12 = 4,6 А.

Вводим в калькулятор 12 вольт и 4,6 ампера. Он вычисляет:

  • сопротивление 2,6 ома.
  • мощность 5 ватт.

Здесь обращаю внимание на то, что если замерить сопротивление в холодном состоянии мультиметром, то оно будет значительно ниже.

Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников.

Другими словами: изменение сопротивления вольфрама при нагреве до раскаленного состояния ограничивает возрастание тока через него. Но в холодном состоянии металла происходит бросок тока. От него нить может перегореть.

Для продления ресурса работы подобных лампочек используют схему постепенной, плавной подачи напряжения от нуля до номинальной величины.

В качестве простых, но надежных устройств для автомобиля часто используется релейная схема ограничения тока, работающая ступенчато.

При включении выключателя SA сопротивление резистора R ограничивает бросок тока через холодную нить накала. Когда же она разогреется, то за счет изменения падения напряжения на лампе HL1 электромагнит с обмоткой реле KL1 поставит свой контакт на удержание.

Он зашунтирует резистор, чем выведет его из работы. Через нить накала станет протекать номинальный ток схемы.

Полезная информация для начинающего электрика

Как использовать закон Ома на практике

Почти два столетия назад в далеком 1827 году своими экспериментами Георг Ом выявил закономерность между основными характеристиками электричества.

Он изучил и опубликовал влияние сопротивления участка цепи на величину тока, возникающего под действием напряжения. Ее удобно представлять наглядной картинкой.

Любую работу всегда создает трудяга электрический ток. Он вращает ротор электрического двигателя, вызывает свечение электрической лампочки, сваривает или режет металлы, выполняет другие действия.

Поэтому ему необходимо создать оптимальные условия: величина электрического тока должна поддерживаться на номинальном уровне. Она зависит от:

  1. значения приложенного к цепи напряжения;
  2. сопротивления среды, по которой движется ток.

Здесь напряжение, как разность потенциалов приложенной энергии, является той силой, которая создает электрический ток.

Если напряжения не будет, то никакой полезной работы от подключённой электрической схемы не произойдёт из-за отсутствия тока. Эта ситуация часто встречается при обрыве, обломе или отгорании питающего провода.

Сопротивление же решает обратную для напряжения задачу. При очень большой величине оно так ограничивает ток, что он не способен совершить никакой работы. Этот режим применяется у хороших диэлектриков.

Примеры из жизни

№1: выключатель освещения разрывает цепь электрических проводов, по которым напряжение добирается до лампочки.

Между контактами образуется воздушный зазор. Он отличный изолятор, исключающий движение тока по осветительному прибору.

№2: клеммы розетки, как источника напряжения, замкнули между собой без сопротивления короткой проволокой. В этой ситуации создается короткое замыкание.

Ток КЗ способен сжечь электропроводку, вызвать пожар в квартире. Поэтому от таких ситуаций существует только одно спасение: использование защит, способных максимально быстро отключить питающее напряжение.

Для бытовой сети это функция автоматических выключателей или предохранителей, о работе которых я буду рассказывать в других статьях.

Используя сопротивление, следует понимать, что оно, само по себе, не вечно: обладая резервом противостояния приложенной энергии, оно может его израсходовать, не справиться со своей задачей и сгореть.

Поэтому для сопротивления вводится понятие мощности рассеивания, которая надежно отводится во внешнюю среду. Если тепловая энергия, развиваемая прохождением тока, превышает эту величину, то сопротивление сгорает.

Напряжение и сопротивление в комплексе формируют электрические процессы. Онлайн калькулятор закона Ома позволяет оптимально рассчитать величину тока, необходимую для совершения полезной работы.

Что такое участок цепи

Рассмотрим самую простую электрическую схему, состоящую из батарейки, лампочки и проводов. В ней циркулирует электрический ток.

Представленная схема или полная цепь состоит из двух контуров:

  1. Внутреннего источника напряжения.
  2. Внешнего участка: лампочки с подключенными проводами.

Те процессы, которые происходят внутри батарейки, нас интересуют в основном как познавательные. Их мы можем только ухудшить при неправильной эксплуатации.

Например, приходящая в квартиру электрическая энергия от трансформаторной подстанции нам не подвластна. Мы ей просто пользуемся. От неисправностей и аварийных режимов нас защищают автоматические выключатели, УЗО, реле РКН, ограничители перенапряжения или УЗИП, другие современные модули защит.

Внешний же, подключенный к источнику напряжения контур, является участком цепи, в котором мы, используя закон Ома, совершаем полезную для себя работу.

Как использовать треугольник закона Ома

Простое мнемоническое правило представлено тремя составляющими в виде частей треугольника. Оно позволяет легко запомнить взаимосвязи между током, сопротивлением и напряжением.

Вверху всегда стоит напряжение. Ток и сопротивление снизу. Когда вычисляем какую-то одну величину по двум другим, то ее изымаем из треугольника и выполняем арифметическое действие: деление или умножение.

Шпаргалка электрика для новичков

Треугольник закона Ома легко запоминается, но он не позволяет учитывать мощность потребления электроприбора. Этот четвертый параметр, важный для любого домашнего электрика, всегда надо учитывать. .

На всех бытовых электрических приборах указывают мощность потребления электрической энергии в ваттах или киловаттах. Ее формулы, совместно с предыдущими величинами, можно брать со следующей картинки.

Такая шпаргалка электрика позволяет делать простые вычисления в уме или на бумаге. Формулы из нее заложены в алгоритм, по которому работает мой онлайн калькулятор закона Ома.

Предлагаю провести одинаковые вычисления обоими методами и сравнить полученные результаты. Если вдруг найдете расхождения, то укажите в комментариях. Это будет ваша помощь моему проекту.

Я постарался кратко и просто рассказать о принципах работы закона Ома применительно к задачам, решаемым домашним мастером. Считаю, что это достаточно и не рассматриваю закон Ома для полной цепи в обычной форме, комплексных числах, или ином виде.

Если же вы хотите просмотреть видеоурок по этой теме, то воспользуйтесь материалами владельца Физика-Закон Ома.

Возможно, у вас остались вопросы о работе калькулятора? Задавайте. Я на них отвечу. Воспользуйтесь разделом комментариев.

Напоследок напоминаю, что у вас сейчас самое благоприятное время поделиться этим материалом с друзьями в соц сетях и подписаться на рассылку сайта. Тогда вы сможете своевременно получать информацию о новых публикуемых статьях.

Понятие силы тока, мощности, напряжения

При рассмотрении понятий силы тока, напряжения, мощности, нужно осознавать то, что все эти три параметра неразрывно связанны.
 

Мощность – это отношение производимой за определенный отрезок времени работы к данному отрезку времени. Единицей измерения является Ватт. 1 киловатт равен 1000 ватт.
 

Сила тока – это устремленное перемещение заряженных частиц. Выражает количество заряда, что пробегает сквозь разрез проводника за единицу времени. Единицей измерения является Ампер.
 

Напряжение – это отношение работы, выполненной электрическим полем для перенесения заряда, к значению переносимого заряда на полосе цепи. Этот параметр выражает работу, проделанную полем для передачи заряда между двумя точками. Единицей измерения является Вольт.
 

Можно провести аналогию описываемых параметров “силы”, “мощности” и “напряжения” с течением воды, где число ампер (сила тока) – это объем воды, пробегающей за единицу времени (обусловливается расходованием электричества, иными словами зависит от того, насколько сильно открыт кран), количество ватт (мощность) – это, к примеру, действие по приведению в движение лопастей турбины (давление перемноженное на силу тока), а значение вольт (напряжение) – это напор воды в трубопроводе. Стало быть, на блоке питания принципиальной является мощность, то есть, выдержит ли прибор, на батарейке – напряжение, потянет ли пользователь. На устройствах для электросети с установленным напряжением (220 вольт у нас) максимум силы тока, при перемножении этого показателя на значение напряжения, параллельно является и максимумом мощности.
 

Как же вычислить мощность с помощью величины напряжения и силы тока?
 

«Мощность» = «Сила тока» (Амперы) умножить на «Напряжение» (Ватты).
 

Как провести расчет силы тока по мощности и напряжению?
 

Исходя из предыдущей формулы, можем найти значение силы тока:
 

«Сила тока» = «Мощность» (Вольт-ампер) разделить на «Напряжение» (Ватты).
 

Существует еще пара значимых факторов, ежели речь идет об электричестве:
 

— Типичные розетки предусмотрены для силы тока числом 16 ампер. Так, как напряжение в электросети 220 вольт, значит, граничная мощность равна: 16 ампер умножить на 220 вольт = 3520 ватт (3,52 киловатт).
— В производстве розеток, в основном, используют 16-амперные автоматы. Из этого следует, что, когда на линии электропередачи с 16-амперным автоматом сила тока превысит 16 ампер (либо мощность возрастет свыше 3,52 киловатт), прибор автоматически вырубится. 

 

В частности, если в вашем доме проведена индивидуальная линия для кухонных розеток, то во время подсоединения к данной линии сразу двух электрообогревателей, с мощностью обоих в 2 киловатта, автомат разъединит электрическую цепь.

Расчет примерной мощности электроприборов

Содержание

Простой способ расчёта мощности электроприборов

Мощность каждого электроприбора указана в техпаспорте и дублируется на прикрепленной к нему бирке или табличке. Самый простой способ расчёта — просуммировать мощности всех подключаемых к стабилизатору или ИБП потребителей.

Поправка: сейчас мы рассмотрели оборудование без электродвигателей. Оно обладает только активной составляющей мощности. К этой категории относятся электроплиты, кипятильники, лампы накаливания и др.

Холодильники, стиральные машины, дрели и прочее оборудование с электродвигателями обладает также реактивной составляющей мощности.

Для таких электроприборов необходимо вычислить полную мощность (измеряется в Вольт-Амперах (ВА)), которая, в отличие от описанного выше, не будет равна активной мощности. Соотношение между полной и активной мощностью выражается формулой:

  • Pполная = Pактивная / cos (ф).

Сos(φ) указывается в документации и на бирке электроприбора (встречается обозначение PF – Power Factor). При отсутствии данных допустимо принять cos(φ) в пределах 0,7-0,8.

Например, если P активная мощность электродрели составляет 700 Вт, то P полная рассчитывается как 700 / 0,7 = 1000 ВА.

Вывод: для точного расчета суммарной мощности нагрузки нужно сложить полную мощность всех выбранных приборов (в Вольт-Амперах). Для электроприборов без двигателей полная мощность будет равна активной.

Рекомендуется подбирать стабилизатор с мощностью, превышающей полученное суммированием значение на 20-30%, что обеспечит следующие преимущества:

  • избавит оборудование от перегрузки;
  • позволит подключать дополнительных потребителей.

Пусковые токи электроприборов с реактивной нагрузкой

Не следует забывать, что при запуске оборудования, содержащего электродвигатель (насос, компрессор), его «пусковой ток» в 3-5 раз превышает номинальное значение. Соответственно, в этот момент происходит пропорциональный пусковому току «скачок» нагрузки в 3-5 раз.

При выборе стабилизатора или ИБП следует обязательно учитывать пусковые токи защищаемого оборудования и подбирать аппарат по максимальному, пусковому значению мощности.

Например, если для электродрели с активной мощностью в 700 Вт купить стабилизатор на 1 кВт, то в момент запуска он будет отключаться по причине перегруза. В данном случае необходимо изделие минимум с трехкратным превышением по мощности:

  • 700 Вт × 3 = 2,1 кВт.

Узнать больше про ИБП с двойным преобразованием.

Расчет мощности двигателя | Полезные статьи

Как правило, мощность электродвигателя указывается на шильдике, который закреплен на корпусе или в техническом паспорте устройства. Однако в случае, когда данные на шильдике прочитать невозможно, а документация утеряна, определить мощность можно несколькими способами. Сегодня мы расскажем о двух наиболее надежных них.

Мощность электродвигателя по установочным и габаритным размерам

Понравилось видео? Подписывайтесь на наш канал!

Для первого способа необходимо знать установочные размеры электродвигателя и синхронную частоту вращения. Последняя измеряется с помощью мультиметра, установленного в режим миллиамперметра. Для этого указатель колеса выбора устанавливаем на значение 100µA. Щуп черного цвета подключаем в общее гнездо «COM», а щуп красного цвета — к гнезду для измерения напряжения, сопротивления и силы тока до 10 А.

 

После этого обесточиваем электродвигатель и снимаем крышку с клеммной коробки. Щупы мультиметра подключаем к началу и концу любой из обмоток (например, V1 и V2). После этого рукой медленно проворачиваем вал двигателя так, чтобы он совершил один оборот, и считаем количество отклонений стрелки из состояния покоя, которые она сделает за это время. Число отклонений стрелки за один оборот вала равно количеству полюсов и соответствует такой синхронной частоте вращения: 

 

• 2 полюса – 3000 об/мин;

• 4 полюса – 1500 об/мин;

• 6 полюсов – 1000 об/мин;

• 8 полюсов – 750 об/мин.

 

Теперь необходимо выяснить установочные размеры двигателя. Для замеров используем штангенциркуль, механический или электронный, а также измерительную рулетку. Записываем результаты измерений в миллиметрах: диаметр и длину вылета вала, высоту оси вращения, расстояние между центрами отверстий в «лапах», а если двигатель фланцевый, то диаметр фланца и диаметр крепежных отверстий.

 

Полученные данные сравниваем с параметрами из таблиц 1-3.

Таблица 1. Определение мощности двигателя по диаметру вала и его вылету

Таблица 2. Определение мощности по расстоянию между отверстиями в лапах

Таблица 3. Определение мощности по диаметру фланца и крепежных отверстий

 

 

 

 

 

 

 

Определение мощности по потребляемому току

Мощность двигателя можно определить по потребляемому им току. Для измерения силы тока будем использовать токоизмерительные клещи. 

 

Перед началом измерений предварительно отключаем подачу напряжения на электродвигатель. После этого снимаем крышку с клеммной коробки и расправляем токопроводящие жилы, чтобы обеспечить удобный доступ к ним. 

 

Затем подаем напряжение на двигатель и даем поработать в режиме номинальной нагрузки в течение нескольких минут. Устанавливаем предел измерений на значение «200 А» и токовыми клещами выполняем измерение потребляемого тока на одной из фаз. Далее замеряем напряжение на обмотках с помощью щупов, входящих в комплект токоизмерительных клещей.

 

Колесо выбора режимов и пределов измерений устанавливаем в позицию для измерения переменного напряжения с пределом в 750 В. Щуп красного цвета присоединяем к гнезду для измерения напряжения, сопротивления и силы тока до десяти Ампер, а черного – к гнезду «COM». Замеры выполняем между клеммами «U1-V1» или «V1-W1» или «U1-W1». 

 

Расчет мощности электродвигателя выполняем по формуле:

 

S=1.73×I×U,

 

где S – полная мощность (кВА), I – сила тока (А), U – значение линейного напряжения (кВ).

 

Замеряем ток на одной из фаз, а также напряжение и подставляем полученные значения в формулу (например, при замере мы получили ток равный 15,2А, а напряжение – 220В):

 

S=1. 73×15.2×0.22=5.78 кВА

 

Важно отметить, что мощность эл. двигателя не зависит от схемы соединения обмоток статора. В этом можно убедиться, выполнив измерения на этом же двигателе, но с обмотками статора, соединенными по схеме «звезда»: измеренный ток будет равен 8,8А, напряжение – 380В. Также подставляем значения в формулу:

 

S=1.73×8,8×0.38=5.78 кВА

 

По этой формуле мы определили мощность электродвигателя, потребляемую из электрической сети. 

 

Чтобы узнать мощность двигателя на валу, нужно полученное значение умножить на коэффициент мощности двигателя и на коэффициент его полезного действия. Таким образом, формула мощности двигателя выглядит так:

 

P=S×сosφ×(η÷100),

 

где P – мощность двигателя на валу; S – полная мощность двигателя; сosφ – коэффициент мощности асинхронного электродвигателя; η – КПД двигателя.

 

Поскольку мы не располагаем точными данными, подставим в формулу средние значения cosφ и КПД двигателя:

 

P=5,78×0,8×0,85=3,93≈4кВт

 

Таким образом, мы определили мощность электродвигателя, которая равна 4 кВт.

 

Мы рассказали о самых надежных методах определения мощности электродвигателя. Вы также можете посмотреть наше видео, в котором подробно показано, как определить мощность электродвигателя.

Как преобразовать трехфазную мощность в амперы

Обновлено 14 декабря 2020 г.

Дж. Р. Камбак

В промышленных и бытовых аварийных генераторах используются трехфазные электродвигатели. Все три выхода пропускают одинаковый ток, а передача мощности остается постоянной, поступая на линейную и сбалансированную нагрузку. Чтобы преобразовать мощность в амперы, вам необходимо знать коэффициенты напряжения и мощности электродвигателя. Коэффициент мощности определяет задержку между напряжением и фактическим протеканием электрического тока. Этот номер указан на паспортной табличке большинства крупных электродвигателей, использующих трехфазное питание.

Эта формула вычисляет мощность генератора для определенного тока или ампер при заданном напряжении:

P = VI

Только в этом случае умножьте результат на 1,732.

Важно выделить три типа мощности:

Активная (действительная или истинная) мощность измеряется в ваттах (Вт) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу.

Реактивная мощность вольт-ампер (ВАР) для измерения реактивной мощности. Индуктивные двигатели, трансформаторы и соленоиды накапливают и разряжают реактивную мощность.

Вольт-амперы (ВА) для измерения полной мощности. Это напряжение в системе переменного тока, умноженное на весь ток, протекающий в ней, и сумму активной и реактивной мощности.

Соотношение между активной и полной мощностью:

1 \ text {kVA} = \ frac {1 \ text {kW}} {\ text {power factor}}

    Убедитесь, что ваши измерения соответствуют стандарту единицы измерения.Для двигателя или генератора, выраженного в киловаттах, переведите его в ватты: 1 кВт = 1000 Вт.

    Получите измерение напряжения, если оно еще не предоставлено. Используйте качественный цифровой вольтметр для измерения линейного напряжения между любыми двумя из трех выходов.

    Найдите коэффициент мощности (p.f.) на паспортной табличке. Для чисто резистивной схемы коэффициент мощности равен 1,0 (идеально).

    Используйте формулу закона Ома:

    P = VI

    Составьте уравнение для трехфазной мощности, чтобы определить ток (в амперах):

    I = \ frac {P} {1.732V \ times \ text {power factor}}

    Подставьте значение мощности, которую необходимо преобразовать (в ваттах), значение напряжения (в вольтах) и коэффициент мощности, чтобы найти ток (в амперах).

    Например, используйте следующую формулу для расчета тока трехфазного электрического генератора мощностью 114 кВт, заданным напряжением 440 В и номинальным коэффициентом мощности 0,8:

    I = \ frac {P } {1,732 В \ times \ text {коэффициент мощности}} = \ frac {1141000} {4401,732 \ times 0. В.

    Данные можно ввести в любое из полей. Когда вы закончили ввод данных, щелкните количество, которое вы хотите рассчитать, в активной формуле выше. Количество не будет принудительно согласованным, пока вы не нажмете на выбор. Для неопределенных параметров будут введены значения по умолчанию, но все значения могут быть изменены.

    После того, как вы рассчитали генерируемое напряжение, разумным последующим вопросом будет «Какой ток и мощность я могу получить от генератора?».Несмотря на то, что это не будет практичной геометрией генератора, она может служить идеализация для обсуждения принципов генерации напряжения при взаимодействии с магнитным полем. Принимая это простая геометрия, электрический ток в амперах, возникающий при перемещении провода через магнитное поле будет определяться сопротивлением цепи, к которой он подключен. связаны, используя закон Ома, I = V / R. Если вы сгенерировали 10 вольт и были подключены к цепи сопротивление 1 Ом, результирующий ток будет 10 ампер, а передаваемая мощность P = VI = 10 вольт x 10 амперы = 100 Вт (см. соотношение мощности).Но бесплатного обеда не существует, и вам придется приложить больше усилий, чтобы двигаться. провод через магнитное поле с такой скоростью — вы, по сути, торгуете механической энергией толкания для выработки электроэнергии, всегда ограничиваясь принципом сохранения энергии. Вам придется приложите (по крайней мере) 100 Вт механической мощности толкания, чтобы получить 100 Вт электроэнергии. Практические генераторы почти всегда используют геометрию вращающейся катушки, а крупномасштабные генераторы энергии используют что-то вроде паровой турбины или водяной турбины, чтобы повернуть катушку провода в спираль. магнитное поле, получающее напряжение, генерируемое с обеих сторон вращающейся катушки.

    Если указанный выше генератор был подключен к цепи с сопротивлением R = Ом,

    электрический ток будет I = V / R = амперы для скорости, перпендикулярной B.

    Мощность, подаваемая в схему, будет P = VI = Вт.

    В идеальном случае, когда не было потерь, механическая мощность P = Fv, необходимая для проталкивания провода через магнитное поле, была бы равна электрической мощности. Для указанной выше скорости требуемая сила равна

    .

    Идеальная минимально необходимая сила:

    F = P / v = ньютоны = фунты.

    Закон Ома для начинающих и новичков

    Закон Ома для начинающих и новичков
    Основной закон Ома

    HTML с: http://www.btinternet.com/~dtemicrosystems/beginner.htm

    ЧТО ЭТО. КАК И ГДЕ ПРИМЕНЯТЬ


    Хотя закон Ома применим не только к резисторам — как мы увидим позже — кажется, логично включить его сейчас, так как он будет хорошей точкой отсчета для резистора подробности приведены выше.

    ЧТО ТАКОЕ ЗАКОН ОМС? :
    Используя диаграмму слева, закон Ома определяется как; «При условии, что температура остается постоянным, отношение разности потенциалов (p.d.) на концах проводника (R) к току (I), протекающему в этом проводнике, также будет постоянным ». проповедь!

    Из этого мы заключаем, что; Ток равен напряжению, разделенному на сопротивление (I = V / R), Сопротивление равно напряжению, разделенному на ток (R = V / I), а напряжение равно току, умноженному на Сопротивление (V = IR).
    Важным фактором здесь является температура. Если расчеты по закону Ома должны давать точные результаты, это должно оставаться постоянным. В «реальном» мире это почти никогда делает, и с точки зрения новичка вам не нужно беспокоиться об этом. более того, поскольку схемы, с которыми вы, вероятно, столкнетесь в данный момент, — и около 95% все те, с которыми вы столкнетесь в будущем — будут работать нормально, даже если они горячие или холодно!

    ЗАКОН ОМС ПРОСТОЙ:
    На рисунке 1 слева показан наиболее распространенный треугольник закона Ома.Начиная с любого раздела треугольник, его можно читать в любом направлении — по часовой стрелке, против часовой стрелки, сверху вниз или снизу вверх — и он всегда предоставит вам расчет, который вы требовать.


    Если рассматривать (слегка диагональные) горизонтальные линии как знаки разделения, а короткие вертикальная линия как знак умножения, и всегда начинайте расчет с любого количества вы ищете, т.е. «V =», «I =» или «R =» у вас будет все возможные формулы, основанные на этом конкретном законе Ома.То есть; V = IxR, I = V / R, R = V / I. Это должно быть очевидно, что формула работает и в обратном направлении, то есть; IxR = V, RxI = V, V / I = R и V / R = I.

    Эти объяснения могут показаться немного сложными, но их легко применить на практике. Как правило, для начинающих будет более понятен полезный пример, а не эти причудливые столы, так что поехали.

    ПОЯСНЕНИЕ НА ПРИМЕРЕ:
    Допустим, друг просит вас установить красную сигнальную лампу на приборную панель его / ее автомобиля.Будучи энтузиастом электроники, вы решили использовать красный светоизлучающий диод (LED), поскольку они излучают достаточно чистый красный свет, не выделяют чрезмерного тепла лампы накаливания, они также дешевы по сравнению и выглядят высокотехнологичными!

    С точки зрения принципиальной схемы расположение будет таким, как показано слева.
    ОГРАНИЧИТЕЛЬ ТОКА РЕЗИСТОР:
    Стандартные светодиоды не могут получать питание напрямую от 12 В без установки ограничения тока. резистор включен последовательно с одним из выводов, но какое значение вы используете? Как общее правило на практике, вашему среднему светодиоду требуется около 15 мА тока для получения приемлемого света. выход.Учитывая это, теперь у нас есть две известные величины для использования в наших расчетах: напряжение и ток. Используя треугольник закона Ома, требуемое сопротивление равно рассчитывается по формуле «R = V / I», которая дает нам 12 / 0,015 = 800 Ом (см. ниже для ‘Vf’). Не забывайте, ток измеряется в амперах.

    На первый взгляд может показаться, что это проблема, поскольку 800 Ом не является стандартным значением. доступен в диапазоне E12. Однако в этом типе цепи сопротивление не критический, и ближайшего предпочтительного значения будет вполне достаточно, а именно 820 Ом.

    НЕ ЗАБЫВАЙТЕ О ‘Vf’:
    Все электронные компоненты демонстрируют — в большей или меньшей степени — то, что известно как ‘выбывать’. Он имеет различные сокращения в зависимости от типа компонента, к которому он ссылается, но обычно они означают одно и то же. На самом деле это количество напряжения, которое используется компонентом для работы. Для стандартного светодиода это значение находится в диапазоне около 1,5 — 3 вольт, и для наших целей мы примем 2 В.

    Это означает, что из ваших 12 вольт от аккумулятора 2 вольта будут израсходованы светодиодом. Сама по себе, поэтому ваш расчет закона Ома должен быть основан на 10 вольт.Истинная формула должно быть на самом деле; (12-Vf) /0.015=666.66 Ом (повторяется для математиков среди ты!). Ближайшее значение в диапазоне E12 составляет 680 Ом, поэтому в идеале это должно быть ценность для использования. В целях безопасности, когда ваши результаты заканчиваются непонятными значениями, такими как при этом всегда выбирайте ближайшее значение выше, а не следующее ниже.

    ПОСЛЕДОВАТЕЛЬНЫЕ И ПАРАЛЛЕЛЬНЫЕ РЕЗИСТОРЫ

    Возможно «изготовление» стандартных и нестандартных номиналов резисторов на соответствовать вашим потребностям, если требуемое значение отсутствует.Это достигается подключением два или более из них параллельно, последовательно или их комбинация. Однако вам нужно заранее знать, как они взаимодействуют друг с другом в этих конфигурациях.

    РЕЗИСТОРЫ СЕРИИ:
    На рисунке слева показаны три последовательно включенных резистора. Это самый простой способ получить «фабричные» значения. Формула прямой для расчет окончательного значения; «R» = R1 + R2 + R3. Другими словами, независимо от количества резисторов или их индивидуальных значений, окончательное значение «R» всегда будет их суммой. Расчет по ноге изображения работает для любого количества значений, соединенных последовательно, вы просто продолжаете добавлять их в список других.

    ПАРАЛЛЕЛЬНЫЕ РЕЗИСТОРЫ:
    При параллельном соединении резисторов расчеты сложнее. На рисунке слева показаны три параллельно включенных резистора. Мы будем не заботиться о трех отдельных ценностях, а сосредоточиться на том, что окончательное значение «R» будет с использованием примеров значений.Расчет у подножия изображение работает для любого количества значений, соединенных параллельно, вы просто продолжаете добавлять их в список других в скобках. Для наших целей предположим, что R1 составляет 47 КБ, R2 — это 150 КБ, а R3 — 820 КБ. Формула прямой линии для окончательного значения: «R» = 1 / ( (1 / R1) + (1 / R2) + (1 / R3)).
    В этой формуле есть много ненужных скобок (скобок), и вот причина; почти для всех расчетов электроники вам нужно использовать калькулятор, который отдает приоритет функциям умножения и деления, а также наиболее научным калькуляторы работают именно так.К сожалению, многие «простые» калькуляторы этого не делают, поэтому дополнительные скобки были показаны, чтобы компенсировать те, которые вычисляют цифры в порядок их ввода. С научным калькулятором вы можете использовать упрощенный формула прямой линии; «R» = 1 / (1 / R1 + 1 / R2 + 1 / R3).

    Важно определить значения в скобках перед применением окончательного Функция «1 /». В противном случае формула принимает вид 1 / R1 + 1 / R2 + 1 / R3 =? если ты попробуйте это на своем калькуляторе, используя наши примеры значений, вы, вероятно, подумаете, что у вас есть неправильный ответ (0.02916 …), но вы этого не сделали. На самом деле у вас точно есть право ответ, ему просто не хватает последней функции «1 /».

    Если в вашем калькуляторе есть «1 / X» (единица, разделенная на все, что показано в display), затем нажмите эту кнопку сейчас. Если эта функция недоступна, поместите результат в памяти (убедившись, что раньше там ничего не было), очистите дисплей а затем введите «1 MR =» или другую подобную последовательность. Результат должен быть 34,29 кОм (34 290,29005 Ом), что правильно.Итак, итоговое значение всех трех параллельно включенные резисторы — 34,29К.

    ДЛЯ ЧЕГО ДРУГОЙ ТРЕУГОЛЬНИК?

    На рис. 2 слева показан второй по величине часто используемый треугольник закона Ома. К этому можно подойти точно так же, как и к выше, только на этот раз он используется для расчета мощности, напряжения и тока. В объяснения здесь таковы; Ток равен мощности, деленной на напряжение (I = P / V), мощность равна Ток, умноженный на напряжение (P = VxI), и напряжение равно мощности, деленной на ток (V = P / I).


    ДЕМОНСТРАЦИЯ НА ПРИМЕРЕ:
    Чтобы продемонстрировать использование этого треугольника, мы применим его к обычному электрическому / электронному компонент — трансформатор. Их характеристики обычно цитируются с точки зрения выходное напряжение их вторичной обмотки вместе с возможной мощностью (в ВА) это напряжение. Термин «VA» означает ватты и происходит от формулы «Вольт на Ампер» (отсюда — ВА). Это обозначается буквой «P» в треугольник закона Ома.

    ЧТО ТРАНСФОРМАТОР ДЕЛАТЬ НЕОБХОДИМОСТЬ ?
    Допустим, у вас есть цепь 9 В, которая потребляет 1.5 ампер тока. Вы хотите знать, если трансформатор с номиналом 9 В при 25 ВА будет достаточным для питания вашей цепи. Ты уже есть две величины от трансформатора — напряжение (В) и мощность (P или VA), и по ним вы хотите узнать, какой будет доступный ток (I).


    Используя формулу «I = P / V» из треугольника, результат: 25/9 = 2,77 усилители. Таким образом, этот трансформатор подойдет для ваших нужд на 1,5 А. В целях безопасности если цепь будет постоянно потреблять определенное количество тока, независимо от каким может быть этот ток, тогда всегда используйте трансформатор, доступный как минимум на 50% больше ток, чем требует ваша схема.Никогда не используйте тот, у которого «ровно столько» тока, потому что он станет слишком горячим, что приведет к изменению характеристик напряжения и текущий указан. Эти изменения сложны, и мы не будем их объяснять в этой статье. раздел для начинающих, но будьте осторожны при выборе трансформаторов.

    Как измерить трехфазный ток питания

    Когда вашему бизнесу нужно знать, какой у вас уровень власти.
    Вот как можно измерить трехфазный ток.

    Возможно, идея измерения трехфазного тока питания кого-то из вас пугает. В конце концов, использование трехфазных источников питания не обязательно означает понимание (или даже интерес) лежащей в основе математики.

    Тем не менее, некоторым из вас может быть немного любопытно, как оценивается мощность.

    Так как же рассчитать трехфазную мощность?

    Хотя вы, безусловно, можете взглянуть на техническую статью Википедии, мы думаем, что вы найдете наш простой подход к этой задаче немного больше…подходит для новичков.

    При этом, давайте сразу перейдем к делу. Наша первая задача — установить переменные.

    Размещение переменных в таблице

    Каждый хороший урок должен четко определять переменные в самом начале, и, разумеется, мы хотим, чтобы это был хороший урок. Следовательно, на этот раз мы кратко коснемся ватт, полной мощности и коэффициентов мощности.

    Ватт (Вт) — это показатель мощности.Эта единица измерения используется для измерения мощности, потребляемой цепью. Киловатты (кВт) также могут использоваться для измерения этой мощности; один киловатт эквивалентен 1000 ватт.

    Полная мощность (ВА или вольт-ампер) рассчитывается путем нахождения произведения напряжения и тока; Полная мощность также может быть измерена в киловольт-амперах (кВА). КВА равна 1000 вольт-ампер.

    Коэффициент мощности (pf) — это отношение между киловольт-амперами и киловаттами. Его можно представить как:

    кВт = кВА x пф

    Обратите внимание, что эта формула может быть алгебраически преобразована для вычисления каждого компонента. Например, коэффициент мощности можно представить как:

    pf = кВт / кВА

    Напротив, киловольт-амперы могут быть представлены как:

    кВА = кВт / пф

    Расчет однофазного тока питания

    Хотя наша конечная цель — научить вас рассчитывать трехфазный ток питания, мы (и большинство других людей) полагаем, что обучение вас тому, как рассчитать однофазный ток питания, заложит некоторые важные основы для того, что у вас есть в вашем бизнесе сейчас. и
    то, что вам может понадобиться в будущем.

    Есть две причины для нашего предположения, первая из которых заключается в том, что вычисление однофазного тока питания намного проще, чем вычисление многофазного или трехфазного тока питания
    .

    Вторая, более важная причина связана с тем, что вы можете использовать логику и формулу для расчета однофазных силовых токов при расчете многофазных силовых токов.

    Но хватит разговоров. Давайте приступим к делу.

    Вообще говоря, вы не несете ответственности за вычисление всех значений переменных; некоторые, например, напряжение или коэффициент мощности, будут предоставлены. В конце концов, у вас, по-видимому, нет доступа к вольтметру или любому другому инструменту подобного рода.

    Сказав это, вы можете легко использовать переменные, значения которых вы знаете, для поиска любых неизвестных значений. Если, например, вам известен коэффициент мощности и мощность, вы можете быстро определить полную мощность.

    Помните, что коэффициент мощности — это отношение между киловольт-амперами и киловаттами. Это отношение ранее выражалось как:

    кВт = кВА x пф

    Если мы алгебраически переформулируем это уравнение, чтобы найти полную мощность (кВА), мы получим:

    кВА = кВт / пф

    Таким образом, мы можем разделить нашу мощность на коэффициент мощности, чтобы найти нашу полную мощность.

    Что же мы думаем об этой кажущейся мощности?

    На этом этапе мы должны ввести новую формулу, которая позволит нам рассчитать ток. К счастью, есть простой:

    .

    Ток = кВА (или ВА) / напряжение

    Используя эту формулу, мы просто делим рассчитанную нами кВА на напряжение (которое должно быть указано), чтобы вычислить ток.

    Расчет трехфазного тока питания

    Теперь, когда мы рассчитали однофазный ток питания, мы можем перейти к тому же самому для трехфазных силовых токов.Хотя существует формула для расчета трехфазных токов питания, мы научим вас более интуитивно понятному способу выполнения этой задачи.

    Однако, прежде чем мы перейдем к математике, вы должны точно понять, чем трехфазная система отличается от однофазной.

    Проще говоря, решающее различие между двумя системами — это напряжение; трехфазные системы имеют линейное напряжение (VLL) и фазное напряжение (VLN).

    Отношение между линейным напряжением и фазным напряжением можно записать как:

    VLN = VLL / sqrt (3)

    Для наших целей вам не нужно глубоко разбираться в этих двух переменных.Вам нужно только помнить об отношениях между ними.

    Вам также не стоит беспокоиться о вычислении их обоих; хотя бы один из них будет передан вам.

    Используя метод, который мы вам научим, общая идея состоит в том, чтобы преобразовать трехфазную систему в однофазную.

    Однако для того, чтобы выполнить это преобразование, вы должны понимать, что для наших целей трехфазная система по существу вырабатывает в 3 раза больше киловатт, чем однофазная; Эта разница в производимой мощности позволяет легко понять, почему некоторые люди переходят на трехфазное питание.

    Полная мощность также увеличивается в три раза в трехфазной системе.

    Тем не менее, чтобы рассчитать трехфазный ток питания с помощью этого метода, вам нужно разделить мощность на 3, прежде чем подставлять значение в эту формулу:

    кВА = кВт / пф

    Вы должны заметить, что это точно такая же формула, которая использовалась выше для однофазных систем.

    Затем вы должны следовать этой формуле, разделив кВА на напряжение (ваш VLN в случае трехфазной системы), чтобы рассчитать ток.

    Однако в этом случае есть дополнительный шаг.

    Помните, что вы разделили на 3, чтобы составить уравнение для однофазной системы. Таким образом, из-за этого разделения ваш ответ отражает только результат одной фазы.

    Чтобы найти выход трехфазной системы, с которой вы начали, вам нужно только умножить рассчитанный вами ток на 3.

    Просто, правда?

    Ну только если система сбалансирована.

    Хотя наши расчеты предполагают, что трехфазная система будет сбалансирована, на самом деле большинство систем не так удобно сбалансировано.То есть каждая фаза не всегда производит одинаковое количество энергии.

    В таких случаях вам придется полагаться на гораздо более сложную математику, чтобы получить точный ответ. Эта математика, однако, слишком сложна (полярные координаты и все такое), чтобы вдаваться в подробности здесь.

    Итак, что вы делаете?
    Как насчет большей МОЩНОСТИ?

    Как оказалось, некоторые источники говорят, что вы можете взять среднее значение трех фаз и использовать это значение в своих уравнениях.Тем не менее, следует отметить, что этот метод не даст точного ответа.

    Даже если вы не можете рассчитать точный ответ, имея дело с несбалансированной системой, вы, по крайней мере, выяснили (численно, конечно), что делает трехфазное питание таким популярным ребенком на игровой площадке, который нужен многим предприятиям. их сторона.

    А кто знает? Возможно, однажды вы даже захотите, чтобы он был на вашей стороне. Хотите узнать больше
    о мощности вашего предприятия или объекта? Позвоните в службу Precision Motor Repair для устройств Dyna-Phase
    и получите трехфазный ток питания, необходимый для более эффективной работы.

    Электроэнергия и энергия | Физика

    Цели обучения

    К концу этого раздела вы сможете:

    • Рассчитайте мощность, рассеиваемую резистором, и мощность, подаваемую источником питания.
    • Рассчитайте стоимость электроэнергии при различных обстоятельствах.

    Мощность в электрических цепях

    Мощность ассоциируется у многих с электричеством.Зная, что мощность — это коэффициент использования или преобразования энергии, каково выражение для электроэнергии ? На ум могут прийти линии электропередач. Мы также думаем о лампочках с точки зрения их номинальной мощности в ваттах. Сравним лампочку на 25 Вт с лампой на 60 Вт. (См. Рис. 1 (а).) Поскольку оба работают от одного и того же напряжения, лампа мощностью 60 Вт должна потреблять больше тока, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампы на 60 Вт должно быть ниже, чем у лампы на 25 Вт. Если мы увеличиваем напряжение, мы также увеличиваем мощность.Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от 120 В, подключена к 240 В, она на короткое время очень ярко светится, а затем перегорает. Как именно напряжение, ток и сопротивление связаны с электроэнергией?

    Рис. 1. (a) Какая из этих лампочек, лампа мощностью 25 Вт (вверху слева) или лампа мощностью 60 Вт (вверху справа), имеет более высокое сопротивление? Что потребляет больше тока? Что потребляет больше всего энергии? Можно ли по цвету сказать, что нить накаливания мощностью 25 Вт круче? Является ли более яркая лампочка другого цвета, и если да, то почему? (кредиты: Дикбаух, Wikimedia Commons; Грег Вестфолл, Flickr) (б) Этот компактный люминесцентный светильник (КЛЛ) излучает такую ​​же интенсивность света, как и лампа мощностью 60 Вт, но с входной мощностью от 1/4 до 1/10.(кредит: dbgg1979, Flickr)

    Электрическая энергия зависит как от напряжения, так и от перемещаемого заряда. Проще всего это выражается как PE = qV , где q — это перемещенный заряд, а V, — напряжение (или, точнее, разность потенциалов, через которую проходит заряд). Мощность — это скорость перемещения энергии, поэтому электрическая мощность равна

    . {2} R \\ [/ latex].

    Обратите внимание, что первое уравнение всегда верно, тогда как два других можно использовать только для резисторов. В простой схеме с одним источником напряжения и одним резистором мощность, подаваемая источником напряжения, и мощность, рассеиваемая резистором, идентичны. (В более сложных схемах P может быть мощностью, рассеиваемой одним устройством, а не полной мощностью в цепи.) Из трех различных выражений для электрической мощности можно получить различное понимание. Например, P = V 2 / R означает, что чем меньше сопротивление, подключенное к данному источнику напряжения, тем больше вырабатываемая мощность.Кроме того, поскольку напряжение возведено в квадрат в P = V 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение увеличивается вдвое до лампочки мощностью 25 Вт, ее мощность увеличивается почти в четыре раза и составляет около 100 Вт, что приводит к ее перегоранию. Если бы сопротивление лампы оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также будет выше.

    Пример 1. Расчет рассеиваемой мощности и тока: горячая и холодная мощность

    (a) Рассмотрим примеры, приведенные в Законе Ома: сопротивление и простые цепи и сопротивление и удельное сопротивление.Затем найдите мощность, рассеиваемую фарой автомобиля в этих примерах, как в горячую, так и в холодную погоду. б) Какой ток он потребляет в холодном состоянии?

    Стратегия для (а)

    Для горячей фары нам известны напряжение и ток, поэтому мы можем использовать P = IV , чтобы найти мощность. Для холодной фары нам известны напряжение и сопротивление, поэтому мы можем использовать P = В 2 / R , чтобы найти мощность.

    Решение для (a)

    Вводя известные значения тока и напряжения для горячей фары, получаем

    P = IV = (2.{2}} {0,350 \ text {} \ Omega} = 411 \ text {W} \\ [/ latex].

    Обсуждение для (а)

    30 Вт, рассеиваемые горячей фарой, являются типичными. Но 411 Вт в холодную погоду на удивление выше. Начальная мощность быстро уменьшается по мере увеличения температуры лампы и увеличения ее сопротивления.

    Стратегия и решение для (b)

    Ток при холодной лампочке можно найти несколькими способами. Переставляем одно из уравнений мощности, P = I 2 R , и вводим известные значения, получая

    [латекс] I = \ sqrt {\ frac {P} {R}} = \ sqrt {\ frac {411 \ text {W}} {{0.350} \ text {} \ Omega}} = 34,3 \ text {A} \\ [/ latex].

    Обсуждение для (б)

    Холодный ток значительно выше, чем установившееся значение 2,50 А, но ток будет быстро снижаться до этого значения по мере увеличения температуры лампы. Большинство предохранителей и автоматических выключателей (используемых для ограничения тока в цепи) спроектированы так, чтобы выдерживать очень высокие токи на короткое время при включении устройства. В некоторых случаях, например, с электродвигателями, ток остается высоким в течение нескольких секунд, что требует использования специальных плавких предохранителей с замедленным срабатыванием.

    Чем больше электроприборов вы используете и чем дольше они остаются включенными, тем выше ваш счет за электроэнергию. Этот знакомый факт основан на соотношении энергии и мощности. Вы платите за использованную энергию. Поскольку P = E / t , мы видим, что

    E = Pt

    — это энергия, используемая устройством, использующим мощность P в течение временного интервала t . Например, чем больше горит лампочек, тем больше используется P ; чем дольше они включены, тем больше т .Единицей измерения энергии в счетах за электричество является киловатт-час (кВт ч), что соответствует соотношению E = Pt . Стоимость эксплуатации электроприборов легко оценить, если у вас есть некоторое представление об их потребляемой мощности в ваттах или киловаттах, времени их работы в часах и стоимости киловатт-часа для вашей электросети. Киловатт-часы, как и все другие специализированные единицы энергии, такие как пищевые калории, можно преобразовать в джоули. Вы можете доказать себе, что 1 кВт ⋅ ч = 3.6 × 10 6 Дж.

    Потребляемая электрическая энергия ( E ) может быть уменьшена либо за счет сокращения времени использования, либо за счет снижения энергопотребления этого прибора или приспособления. Это не только снизит стоимость, но и снизит воздействие на окружающую среду. Улучшение освещения — один из самых быстрых способов снизить потребление электроэнергии в доме или на работе. Около 20% энергии в доме расходуется на освещение, в то время как в коммерческих учреждениях эта цифра приближается к 40%.Флуоресцентные лампы примерно в четыре раза эффективнее ламп накаливания — это верно как для длинных ламп, так и для компактных люминесцентных ламп (КЛЛ). (См. Рис. 1 (b).) Таким образом, лампу накаливания мощностью 60 Вт можно заменить на КЛЛ мощностью 15 Вт, которая имеет такую ​​же яркость и цвет. КЛЛ имеют изогнутую трубку внутри шара или спиралевидную трубку, все они подключены к стандартному привинчиваемому основанию, которое подходит для стандартных розеток лампы накаливания. (В последние годы были решены исходные проблемы с цветом, мерцанием, формой и высокими начальными вложениями в КЛЛ.) Теплопередача от этих КЛЛ меньше, и они служат до 10 раз дольше. В следующем примере рассматривается важность инвестиций в такие лампы. Новые белые светодиодные фонари (которые представляют собой группы небольших светодиодных лампочек) еще более эффективны (в два раза больше, чем у КЛЛ) и служат в 5 раз дольше, чем КЛЛ. Однако их стоимость по-прежнему высока.

    Установление соединений: энергия, мощность и время

    Отношение E = Pt может оказаться полезным во многих различных контекстах.Энергия, которую ваше тело использует во время упражнений, зависит, например, от уровня мощности и продолжительности вашей активности. Степень нагрева от источника питания зависит от уровня мощности и времени ее применения. Даже доза облучения рентгеновского изображения зависит от мощности и времени воздействия.

    Пример 2. Расчет рентабельности компактных люминесцентных ламп (КЛЛ)

    Если стоимость электроэнергии в вашем районе составляет 12 центов за кВтч, какова общая стоимость (капитальные плюс эксплуатация) использования лампы накаливания мощностью 60 Вт в течение 1000 часов (срок службы этой лампы), если стоимость лампы составляет 25 центов? (б) Если мы заменим эту лампочку компактной люминесцентной лампой, которая дает такой же световой поток, но составляет четверть мощности и стоит 1 доллар.50, но длится в 10 раз дольше (10 000 часов), какова будет общая стоимость?

    Стратегия

    Чтобы найти эксплуатационные расходы, мы сначала находим используемую энергию в киловатт-часах, а затем умножаем ее на стоимость киловатт-часа.

    Решение для (a)

    Энергия, используемая в киловатт-часах, определяется путем ввода мощности и времени в выражение для энергии:

    E = Pt = (60 Вт) (1000 ч) = 60,000 Вт ⋅ ч

    В киловатт-часах это

    E = 60.0 кВт ⋅ ч.

    Сейчас стоимость электроэнергии

    Стоимость

    = (60,0 кВт ч) (0,12 долл. США / кВт час) = 7,20 долл. США.

    Общая стоимость составит 7,20 доллара за 1000 часов (около полугода при 5 часах в день).

    Решение для (b)

    Поскольку CFL использует только 15 Вт, а не 60 Вт, стоимость электроэнергии составит 7,20 доллара США / 4 = 1,80 доллара США. КЛЛ прослужит в 10 раз дольше, чем лампа накаливания, так что инвестиционные затраты составят 1/10 стоимости лампы за этот период использования, или 0.1 (1,50 доллара США) = 0,15 доллара США. Таким образом, общая стоимость 1000 часов составит 1,95 доллара США.

    Обсуждение

    Следовательно, использование КЛЛ намного дешевле, даже если начальные вложения выше. Повышенная стоимость рабочей силы, которую бизнес должен включать в себя для более частой замены ламп накаливания, здесь не учитывается.

    Подключение: Эксперимент на вынос — Инвентаризация использования электроэнергии

    1) Составьте список номинальной мощности для ряда приборов в вашем доме или комнате.Объясните, почему что-то вроде тостера имеет более высокий рейтинг, чем цифровые часы. Оцените энергию, потребляемую этими приборами в среднем за день (оценивая время их использования). Некоторые приборы могут указывать только рабочий ток. Если бытовое напряжение составляет 120 В, используйте P = IV . 2) Проверьте общую мощность, используемую в туалетах на этаже или в здании вашей школы. (Возможно, вам придется предположить, что используемые длинные люминесцентные лампы рассчитаны на 32 Вт.) Предположим, что здание было закрыто все выходные, и что эти огни были оставлены включенными с 6 часов вечера.{2} R \\ [/ латекс].

    • Энергия, используемая устройством с мощностью P за время t , составляет E = Pt .

    Концептуальные вопросы

    1. Почему лампы накаливания тускнеют в конце своей жизни, особенно незадолго до того, как их нити оборвутся?

    Мощность, рассеиваемая в резисторе, равна P = V 2 / R , что означает, что мощность уменьшается при увеличении сопротивления. Тем не менее, эта мощность также определяется соотношением P = I 2 R , что означает, что мощность увеличивается при увеличении сопротивления.Объясните, почему здесь нет противоречия.

    Задачи и упражнения

    1. Какова мощность разряда молнии 1,00 × 10 2 МВ при токе 2,00 × 10 4 A ?

    2. Какая мощность подается на стартер большого грузовика, который потребляет 250 А тока от аккумуляторной батареи 24,0 В?

    3. Заряд в 4,00 Кл проходит через солнечные элементы карманного калькулятора за 4,00 часа. Какова выходная мощность, если выходное напряжение вычислителя равно 3.00 В? (См. Рисунок 2.)

    Рис. 2. Полоса солнечных элементов прямо над клавишами этого калькулятора преобразует свет в электричество для удовлетворения своих потребностей в энергии. (Источник: Эван-Амос, Wikimedia Commons)

    4. Сколько ватт проходит через него фонарик с 6,00 × 10 2 за 0,500 ч использования, если его напряжение составляет 3,00 В?

    5. Найдите мощность, рассеиваемую каждым из этих удлинителей: (a) удлинительный шнур с сопротивлением 0,0600 Ом, через который 5.00 А течет; (б) более дешевый шнур с более тонким проводом и сопротивлением 0,300 Ом.

    6. Убедитесь, что единицами измерения вольт-ампер являются ватты, как следует из уравнения P = IV .

    7. Покажите, что единицы 1V 2 / Ω = 1W, как следует из уравнения P = V 2 / R .

    8. Покажите, что единицы 1 A 2 ⋅ Ω = 1 Вт, как следует из уравнения P = I 2 R .

    9. Проверьте эквивалент единиц энергии: 1 кВт ч = 3,60 × 10 6 Дж.

    10. Электроны в рентгеновской трубке ускоряются до 1,00 × 10 2 кВ и направляются к цели для получения рентгеновских лучей. Вычислите мощность электронного луча в этой трубке, если она имеет ток 15,0 мА.

    11. Электрический водонагреватель потребляет 5,00 кВт за 2,00 часа в сутки. Какова стоимость его эксплуатации в течение одного года, если электроэнергия стоит 12,0 центов / кВт · ч? См. Рисунок 3.

    Рисунок 3. Водонагреватель электрический по запросу. Тепло в воду подается только при необходимости. (кредит: aviddavid, Flickr)

    12. Сколько электроэнергии необходимо для тостера с тостером мощностью 1200 Вт (время приготовления = 1 минута)? Сколько это стоит при 9,0 цента / кВт · ч?

    13. Какова будет максимальная стоимость КЛЛ, если общая стоимость (капиталовложения плюс эксплуатация) будет одинаковой как для КЛЛ, так и для ламп накаливания мощностью 60 Вт? Предположим, что стоимость лампы накаливания составляет 25 центов, а электричество стоит 10 центов / кВтч.Рассчитайте стоимость 1000 часов, как в примере с КЛЛ по рентабельности.

    14. Некоторые модели старых автомобилей имеют электрическую систему 6,00 В. а) Каково сопротивление горячему свету у фары мощностью 30,0 Вт в такой машине? б) Какой ток протекает через него?

    15. Щелочные батареи имеют то преимущество, что они выдают постоянное напряжение почти до конца своего срока службы. Как долго щелочная батарея с номиналом 1,00 А · ч и 1,58 В будет поддерживать горение лампы фонарика мощностью 1,00 Вт?

    16.Прижигатель, используемый для остановки кровотечения в хирургии, выдает 2,00 мА при 15,0 кВ. а) Какова его выходная мощность? б) Какое сопротивление пути?

    17. В среднем телевизор работает 6 часов в день. Оцените ежегодные затраты на электроэнергию для работы 100 миллионов телевизоров, предполагая, что их потребляемая мощность составляет в среднем 150 Вт, а стоимость электроэнергии составляет в среднем 12,0 центов / кВт · ч.

    18. Старая лампочка потребляет всего 50,0 Вт, а не 60,0 Вт из-за истончения ее нити за счет испарения.Во сколько раз уменьшается его диаметр при условии равномерного утонения по длине? Не обращайте внимания на любые эффекты, вызванные перепадами температур.

    Медная проволока калибра 19. 00 имеет диаметр 9,266 мм. Вычислите потери мощности в километре такого провода, когда он пропускает 1,00 × 10 2 A.

    Холодные испарители пропускают ток через воду, испаряя ее при небольшом повышении температуры. Одно такое домашнее устройство рассчитано на 3,50 А и использует 120 В переменного тока с эффективностью 95,0%.а) Какова скорость испарения в граммах в минуту? (b) Сколько воды нужно налить в испаритель за 8 часов работы в ночное время? (См. Рисунок 4.)

    Рис. 4. Этот холодный испаритель пропускает ток непосредственно через воду, испаряя ее напрямую с относительно небольшим повышением температуры.

    21. Integrated Concepts (a) Какая энергия рассеивается разрядом молнии с током 20 000 А, напряжением 1,00 × 10 2 МВ и длиной 1.00 мс? (б) Какую массу древесного сока можно было бы поднять с 18ºC до точки кипения, а затем испарить за счет этой энергии, если предположить, что сок имеет те же тепловые характеристики, что и вода?

    22. Integrated Concepts Какой ток должен вырабатывать подогреватель бутылочек на 12,0 В, чтобы нагреть 75,0 г стекла, 250 г детской смеси и 3,00 × 10 2 алюминия от 20 ° C до 90º за 5,00 мин?

    23. Integrated Concepts Сколько времени требуется хирургическому прижигателю, чтобы поднять температуру на 1.00 г ткани от 37º до 100, а затем закипятите 0,500 г воды, если она выдает 2,00 мА при 15,0 кВ? Не обращайте внимания на передачу тепла в окружающую среду.

    24. Integrated Concepts Гидроэлектрические генераторы (см. Рисунок 5) на плотине Гувера вырабатывают максимальный ток 8,00 × 10 3 A при 250 кВ. а) Какова выходная мощность? (b) Вода, питающая генераторы, входит и покидает систему с низкой скоростью (таким образом, ее кинетическая энергия не изменяется), но теряет 160 м в высоте.Сколько кубических метров в секунду необходимо при КПД 85,0%?

    Рисунок 5. Гидроэлектрические генераторы на плотине Гувера. (кредит: Джон Салливан)

    25. Integrated Concepts (a) Исходя из 95,0% эффективности преобразования электроэнергии двигателем, какой ток должны обеспечивать аккумуляторные батареи на 12,0 В 750-килограммового электромобиля: отдых до 25,0 м / с за 1,00 мин? (b) Подняться на холм высотой 2,00 × 10 2 м за 2,00 мин при постоянной 25.Скорость 0 м / с при приложении силы 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? (c) Двигаться с постоянной скоростью 25,0 м / с, прилагая силу 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? См. Рисунок 6.

    Рис. 6. Электромобиль REVAi заряжается на одной из улиц Лондона. (кредит: Фрэнк Хебберт)

    26. Integrated Concepts Пригородный легкорельсовый поезд потребляет 630 А постоянного тока напряжением 650 В при ускорении.а) Какова его мощность в киловаттах? (b) Сколько времени нужно, чтобы достичь скорости 20,0 м / с, начиная с состояния покоя, если его загруженная масса составляет 5,30 × 10 4 кг, предполагая эффективность 95,0% и постоянную мощность? (c) Найдите его среднее ускорение. (г) Обсудите, как ускорение, которое вы обнаружили для легкорельсового поезда, сравнивается с тем, что может быть типичным для автомобиля.

    27. Integrated Concepts (a) Линия электропередачи из алюминия имеет сопротивление 0,0580 Ом / км. Какова его масса на километр? б) Какова масса на километр медной линии с таким же сопротивлением? Более низкое сопротивление сократит время нагрева.Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.

    28. Integrated Concepts (a) Погружной нагреватель, работающий на 120 В, может повысить температуру 1,00 × 10 2 -граммовой алюминиевой чашки, содержащей 350 г воды, с 20 ° C до 95 ° C за 2,00 мин. Найдите его сопротивление, предполагая, что оно постоянно в процессе. (b) Более низкое сопротивление сократит время нагрева. Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.

    29. Integrated Concepts (a) Какова стоимость нагрева гидромассажной ванны, содержащей 1500 кг воды, от 10 ° C до 40 ° C, исходя из эффективности 75,0% с учетом передачи тепла в окружающую среду? Стоимость электроэнергии 9 центов / кВт kWч. (b) Какой ток потреблял электрический нагреватель переменного тока 220 В, если на это потребовалось 4 часа?

    30 . Необоснованные результаты (a) Какой ток необходим для передачи 1,00 × 10 2 МВт мощности при 480 В? (b) Какая мощность рассеивается линиями передачи, если они имеют коэффициент 1.00 — сопротивление Ом? (c) Что неразумного в этом результате? (d) Какие предположения необоснованны или какие посылки несовместимы?

    31. Необоснованные результаты (a) Какой ток необходим для передачи 1,00 × 10 2 МВт мощности при 10,0 кВ? (b) Найдите сопротивление 1,00 км провода, которое вызовет потерю мощности 0,0100%. (c) Каков диаметр медного провода длиной 1,00 км, имеющего такое сопротивление? (г) Что необоснованного в этих результатах? (e) Какие предположения необоснованны или какие посылки несовместимы?

    32.Создайте свою задачу Представьте себе электрический погружной нагреватель, который используется для нагрева чашки воды для приготовления чая. Постройте задачу, в которой вы рассчитываете необходимое сопротивление нагревателя, чтобы он увеличивал температуру воды и чашки за разумный промежуток времени. Также рассчитайте стоимость электроэнергии, используемой в вашем технологическом процессе. Среди факторов, которые необходимо учитывать, — используемое напряжение, задействованные массы и теплоемкость, тепловые потери и время, в течение которого происходит нагрев.Ваш инструктор может пожелать, чтобы вы рассмотрели термозащитный выключатель (возможно, биметаллический), который остановит процесс до того, как в погружном блоке будет достигнута опасная температура.

    Глоссарий

    электрическая мощность:
    — скорость, с которой электрическая энергия подается источником или рассеивается устройством; это произведение тока на напряжение

    Избранные решения проблем и упражнения

    1. 2.00 × 10 12 Вт

    5.{6} \ text {J} \\ [/ latex]

    11. 438 $ / год

    13. $ 6.25

    15. 1.58 ч

    17. 3,94 миллиарда долларов в год

    19. 25,5 Вт

    21. (а) 2,00 × 10 9 Дж (б) 769 кг

    23. 45.0 с

    25. (а) 343 A (б) 2,17 × 10 3 A (в) 1,10 × 10 3 A

    27. (а) 1,23 × 10 3 кг (б) 2,64 × 10 3 кг

    29. (a) 2,08 × 10 5 A
    (b) 4,33 × 10 4 МВт
    (c) Линии передачи рассеивают больше мощности, чем они должны передавать.{2}} {\ text {9,8}} \\ & = \ текст {3,67} \ текст {Ω} \ end {выровнять *}

    Теперь мы можем найти неизвестное сопротивление, сначала вычислив эквивалентное параллельное сопротивление:

    \ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\ & = \ frac {1} {1} + \ frac {1} {5} + \ frac {1} {3} \\ & = \ frac {23} {15} \\ R_ {p} & = \ text {0,65} \ text {Ω} \ end {выровнять *} \ begin {align *} R_ {s} & = R_ {4} + R_ {p} \\ R_ {4} & = R_ {s} — R_ {p} \\ & = \ text {3,67} — \ text {0,65} \\ & = \ текст {3,02} \ текст {Ω} \ end {выровнять *}

    Теперь мы можем рассчитать общий ток:

    \ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {6} {\ text {3,67}} \\ & = \ текст {1,63} \ текст {А} \ end {выровнять *}

    Это ток в последовательном резисторе и во всем параллельном соединении.{2} (\ text {3,02}) \\ & = \ текст {0,89} \ текст {W} \ end {выровнять *}

    Затем мы находим напряжение на этих резисторах и используем его, чтобы найти напряжение на параллельной комбинации:

    \ begin {align *} V & = IR \\ & = (\ текст {1,63}) (\ текст {3,02}) \\ & = \ текст {4,92} \ текст {V} \ end {выровнять *} \ begin {align *} V_ {T} & = V_ {1} + V_ {p} \\ V_ {p} & = V_ {T} — V_ {1} \\ & = \ text {6} — \ text {4,92} \\ & = \ текст {1,08} \ текст {V} \ end {выровнять *}

    Это напряжение на каждом из параллельных резисторов.{2}} {\ text {3}} \\ & = \ текст {3,5} \ текст {W} \ end {выровнять *}

    Калькулятор степенного треугольника

    Треугольник мощности показывает соотношение между реактивной, активной и полной мощностью в цепи переменного тока.

    Важные термины

    • Реальная мощность (P) — Измеряется в ваттах, определяет мощность, потребляемую резистивной частью цепи. Также известная как истинная или активная мощность, выполняет реальную работу в электрической цепи.
    • Реактивная мощность (Q) — Измеренная в ВАХ мощность, потребляемая в цепи переменного тока, которая не выполняет никакой полезной работы, вызванной индукторами и конденсаторами. Реактивная мощность противодействует действию реальной мощности, забирая мощность из цепи для использования в магнитных полях.
    • Полная мощность (S) — Произведение среднеквадратичного напряжения и действующего тока, протекающего в цепи, содержит активную мощность и реактивную мощность.
    • Коэффициент мощности (q) — Отношение реальной мощности (P) к полной мощности (S), обычно выражаемое в виде десятичного или процентного значения.Коэффициент мощности определяет фазовый угол между сигналами тока и напряжения. Чем больше фазовый угол, тем больше реактивная мощность.

    Важные формулы

    • Реальная мощность (P) = VIcosq, Вт (Вт)
    • Реактивная мощность (Q) = VIsinq, Вольт-амперы, реактивная (VAr)
    • Полная мощность (S) = VI, Вольт-амперы (ВА)
    • Коэффициент мощности (q) = P / S
    • VA = Вт / cosq
    • VA = VAR / sinq
    • VAR = VA * sinq
    • VAR = W * tanq
    • Вт = ВА * cosq
    • W = VAR / tanq
    • Sin (q) = Противоположно / Гипотенуза = Q / S = VAr / VA
    • Cos (q) = Соседний / Гипотенуза = P / S = Вт / ВА = коэффициент мощности, p.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *