Ток и напряжение. Виды и правила. Работа и характеристики
Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.
Напряжение
Условно напряжение обозначается буквой
«U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.
Напряжение разделяется на несколько видов, в зависимости от видов тока:
- Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
- Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
— амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
— мгновенное напряжение, которое выражается в определенный момент времени;
— действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
— средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.
При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.
Электрический токТок в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.
Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.
Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.
Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.
Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.
Ток и напряжение подчиняются правилам:
- Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
- В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
- Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.
По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.
В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.
Также существуют другие способы создания внутреннего тока в:
- Жидкостях и газах за счет передвижения заряженных ионов.
- Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
- Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
- Нагревание проводников (не сверхпроводников).
- Приложение к носителям заряда разности потенциалов.
- Химическая реакция с выделением новых веществ.
- Воздействие магнитного поля на проводник.
Формы сигнала тока:
- Прямая линия.
- Переменная синусоида гармоники.
- Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
- Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.
Виды работы электрического тока:
- Световое излучение, создающееся приборами освещения.
- Создание тепла с помощью нагревательных элементов.
- Механическая работа (вращение электродвигателей, действие других электрических устройств).
- Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
- Перегрев контактов и токоведущих частей.
- Возникновение вихревых токов в сердечниках электрических устройств.
- Электромагнитные излучения во внешнюю среду.
Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.
Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.
Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.
Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
- Низкочастотные сигналы с меньшей величиной частоты тока.
- Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.
Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.
Электрический ток в металлахДвижение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.
В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.
При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.
Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.
Похожие темы:
1.2. Ток, напряжение и мощность в электрической цепи
1.2. Ток, напряжение и мощность в электрической цепи.
Электрический ток и напряжение являются основными величинами, характеризующими состояние электрических цепей. Электрический ток в проводниках представляет явление упорядоченного движения электрических зарядов под действием электрического поля. Под словами ток понимают также интенсивность или силу тока, измеряемую количеством электрического заряда q, прошедшего через поперечное сечение проводника в единицу времени:
, [A] (1.1)
где ∆q — электрический заряд, прошедший за время ∆t через поперечное сечение проводника.
Следовательно, ток характеризует скорость изменения заряда во времени.
В системе СИ заряд измеряется в кулонах (Кл), время — в секундах, а ток — в Амперах (А).
Ток является скалярной алгебраической величиной, знак которой зависит от направления движения одноименных зарядов, а именно условно принятого положительного заряда. Для однозначного определения знака тока достаточно произвольно выбрать одно из двух возможных направлений за положительное, которое отмечается стрелкой (см. рис. 1.2.). Перед началом анализа электрической цепи необходимо отметить во всех ветвях положительные направления токов, выбор которых может быть произвольным. Закон изменения тока во времени может быть выражен функцией времени произвольной формы.
Постоянным называется ток, значение которого неизменно во времени при неизменных параметрах электрической цепи. Постоянный ток принято обозначать буквой I.
Прохождение электрического тока в цепи связано с преобразованием или потреблением энергии. Для определения энергии, затрачиваемой при перемещении заряда между двумя рассматриваемыми точками проводника, вводят новую величину — напряжение.
Рекомендуемые файлы
Электрическим напряжением между двумя точками называют количество энергии, затрачиваемой на перемещение заряда из одной точки в другую.
, [В] (1.2.)
где W – энергия электрического поля. При измерении энергии в джоулях (Дж) и заряда в кулонах (Кл) напряжение измеряется в вольтах (В).
Для однозначного определения знака напряжения между двумя выводами рассматриваемого участка цепи одному из выводов условно приписывают положительную полярность, которую отмечают либо знаком <+>, либо стрелкой, направленной от вывода (рис. 1.3). Напряжение положительно, если его полярность совпадает с выбранной.
Рекомендуем посмотреть лекцию «Остальное».
Обычно условно положительную полярность напряжения выбирают согласованной с выбранным положительным напряжением тока, когда стрелки для тока и напряжения совпадают. В цепях постоянного тока напряжение принято обозначать буквой U.
Из определения напряжения (1.2) получается выражение энергии W, затраченной на перемещение заряда q на участке цепи с напряжением U к моменту времени t :
(1.3)
Дифференцирование этого равенства во времени дает выражение мгновенной мощности p — скорости изменения энергии во времени :
(1.4)
Мощность измеряется в Ваттах (Вт). Мощность в электрической цепи постоянного тока обозначается буквой P и равна P=UI. Она является алгебраической величиной, знак которой определяется знаком напряжения и тока: при совпадении этих знаков мощность положительна (Р>0), что соответствует потреблению энергии в рассматриваемом участке цепи; при несовпадении знаков тока и напряжения мощность отрицательна (P<0), что означает выделение ее из участка цепи (такой участок является источником энергии).
Электрическое напряжение: объяснение простыми словами
Электрическое напряжение: объяснение простыми словами
Электрическим напряжением обозначается физическая величина, равная разности потенциалов между двумя точками электрического поля при перемещении единичного заряда. Для простых пользователь такое обозначение не всегда понятно. Поэтому в этой статье мы попытаемся простым, доступным языком рассказать, что собой представляет электрическое напряжение, как оно измеряется и для чего это нужно.
Что такое разность потенциалов?
Для начала проанализируем рисунок:
В первой бутылке вода находится на уровне 300 мм, а во второй – на отметке 150 мм. Разница между уровнями воды в обоих емкостях составляет 150 мм. Если рассматривать это с точки зрения науки об электричестве, это и есть разность потенциалов.
Однако, что будет, если соединить обе бутылки шлангом, а внутрь поместить обычный пластиковый шарик?
Из школьного урока физики о принципе соединяющихся сосудах знаем, что из бутылки, где уровень воды больше, жидкость постепенно перетечет в бутылку с более низким уровнем. Под воздействием потока воды шарик внутри соединяющего шланга будет перемещаться. Процесс перетекания завершится после того, как в обоих бутылках уровень жидкости уравновесится, станет одинаковым.
Иными словами, в ситуации, когда в соединенных между собой емкостях уровень жидкости станет одинаковым, результатом разности потенциалов станет ноль. Шарик останется на месте за счет электродвижущей силы, которая, по итогам эксперимента, равна нулю.
Что такое электродвижущая сила?
Аналогично напряжению, единицей измерения электродвижущей силы (ЭДС) является Вольт.
Для проведения следующего эксперимента понадобится вольтметр (прибор, измеряющий вольты) и обычная батарейка.
При исходном замере прибор покажет 1.5 В (Вольта). Однако это не является напряжением – значение указывает на величину электродвижущей силы.
На следующем этапе эксперимента к батарейке подключаются две лампочки. А напряжение измеряется в разных участках электроцепи.
Внимание следует уделить следующим показателям: напряжение для одной лампочки составляет 1 Вольт, для другой же это значение 0.3 Вольта.
Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах.
Мощность=Напряжение*ток (Р=U*I)
Из этого следует, что чем больше будет значение мощности лампы, тем большее напряжение будет на ней.
Однако, как же получается: если мощность батарейки 1.5 Вольта, к которой подключены лампочки, разделена на 1 Вольт и 0.3 Вольта, куда направились еще 0.2 Вольта? Дело в том, что каждая батарейка наделена своим внутренним сопротивлением, поэтому недостающие 0.2 Вольта были направлены именно сюда.
Резюме
Электродвижущей силой определена физическая величина, характеризующая в источниках тока работу сторонних силовых ресурсов. Посредством электродвижущей силы мы можем определять, как переносится заряд от источника тока по всей электрической цепи. Напряжение показывает этот процесс лишь на отдельном участке этой цепи. Если проще: напряжение – это внешнее силовое воздействие, способствующее перемещению шарика в шланге, соединяющим сосуды из выше приведенного примера. В электричестве напряжение обозначено силой, которая обеспечивает перемещение электронов между атомами.
Рассмотрим еще один пример
Представьте, что вам по силам будет поднять камень, вес которого составляет 40 кг. Это означает, что вы обладаете подъемной силой, равной 40 кг – в электричестве это обозначается как электродвижущая сила. Вы следуете и на своем пути вам попадается камень весом 20 кг. Вы его также берете и переносите на расстояние 10 метров. Для осуществления этого действия вам понадобилось определенное количество энергии, что в электричестве представляется как напряжение. Далее вам попадается камень весом в 30 кг. Следовательно, для его переноса из одного места в другое вам понадобится больше энергии, чем для камня, масса которого не превышала 20 кг. Однако подъемная сила (в электричестве ЭДС), независимо от веса переносимого вами камня, остается всегда одинаковой. При этом, вес камня определяет количество энергии, которая тратится на проведение этого действия (в электричестве это обозначено напряжением). Таким образом, на каждом отрезке вашего пути вы будете испытывать разное напряжение в зависимости от веса камня, который вы намерены перенести.
Ток зависит от напряжения
Закон Ома:
Исходя из приведенной формулы следует: ток является прямо пропорциональным напряжению и обратно пропорциональным
основные понятия, нахождение через силу тока и сопротивление
При проектировании схем различных устройств радиолюбителю необходимо производить точные расчеты c помощью измерительных приборов и формул. В электротехнике используются формулы для вычислений величин электричества (формулы напряжения, сопротивления, силы тока и так далее).
Общие сведения об электрическом токе
Электрическим током является процесс движения заряженных частиц (свободных электронов), имеющий вектор направленности. Частицы перемещаются под действием напряженности электрического поля, имеющей векторное направление. Это поле совершает работу по перемещению этих частиц. Влияют на работу электрического поля сила тока, напряжение и сопротивление.
Физический смысл
Под физическим смыслом понимается работа тока на участке, соотносящаяся с величиной заряда. Положительный заряд перемещается из одной точки, обладающей одним потенциалом, в другую, причем потенциал в этой точке отличается от предыдущего. В результате этого и возникает разность потенциалов, именуемая напряжением или ЭДС (электродвижущей силой).
Для полного понимания этого физического процесса и выяснения физического смысла напряжения необходимо провести аналогию с трубой. Допустим, труба наполнена водой и к ней прикручен кран для слива воды. Эта труба также оборудована краном для заливания воды с помощью мощного насоса.
Для демонстрации аналогии нужно открыть кран полностью, вода начнет выливаться и можно сделать вывод о незначительном давлении. Во втором случае спускной кран открыт не полностью и происходит набор воды при помощи насоса. В трубе создается давление и напор усиливается. Насос, создающий давление, и является в этом примере напряженностью электрического поля.
Электричество, если его не контролировать и не знать о пагубном влиянии на организм человека, способно создать множество проблем начиная от сгорания приборов и пожаров, и заканчивая угрозой жизни и здоровью человека. Техника безопасности очень важна в любой сфере.
Пагубное влияние на человека
Электричество очень опасно и является причиной несчастных случаев. Радиолюбители подвержены риску поражения электрическим током довольно часто. Некоторые радиолюбители пробуют наличие напряжения пальцами и пренебрегают техникой безопасности. Большинство из них считает опасным для жизни напряжение от 500 В, а 110 и 220 — не наносящими вреда здоровью. Удары от маломощных источников тока (маломощный силовой трансформатор, конденсатор), по их мнению, являются неопасными.
Согласно технике безопасности при работах с электричеством, они ошибаются, но есть и другая сторона этого вопроса: организм каждого человека индивидуален, обладает разными параметрами. Из этого утверждения следует, что смертельные характеристики электричества (напряжение и ток) индивидуальны для каждого человека. Одних может ударить 36 В, а других не пробивает и 220 В.
Действие электричества на организм человека зависит от нескольких факторов: силы и частоты, времени и пути прохождения через организм, сопротивления организма или участка тела, по которому протекает ток.
Исследованиями ученых установлено, что величина смертельного тока, поражающего сердце, составляет более 100 мА. Токи от 50 мА до 100 мА вызывают потерю сознания при кратковременном касании к поверхности, которая проводит ток. Токи до 50 мА могут стать причиной травм, например, падения с лестницы, выпускания из рук токоведущего проводника и т. д.
Влияние на фактор поражения еще оказывает и сопротивление тела человека. Сопротивление для каждого индивида определить сложно и диапазон его составляет от 30 кОм до 200 кОм. Эта величина зависит от множества факторов: толщины кожи, влажности тела и окружающей среды, усталости, нервно-эмоционального состояния, болезни и других факторов. Сопротивление резко уменьшается при повышенной влажности воздуха и работе на влажных участках.
Формула расчета напряжения, опасного для жизни, предполагая, что Rч = 2кОм и I = 60 мА, выглядит так: U = I * R = 0,06 * 2000 = 120 В. В этой ситуации опасным напряжением можно считать 120 В и выше.
Частота тока является еще одной опасной характеристикой, обладающей поражающим действием. При увеличении частоты опасность уменьшается прямо пропорционально. Ток оказывает и тепловое действие, поэтому считать высокочастотные токи безопасными нельзя.
Травмы, происходящие из-за электричества, называются электротравмами. Каждая из них несет в себе меньшую или большую опасность. Наиболее опасными являются травмы, полученные от электрической дуги, которая обладает высокой температурой от 5 тыс. до 12 тыс. градусов по Цельсию. Виды электрических травм:
- Электрические ожоги происходят при тепловом воздействии на ткани организма человека, по которым течет ток.
- Обожженные участки на коже возникают при прямом контакте ее с токоведущей частью проводника. Пораженный участок приобретает серый или бледно-серый цвет.
- Металлизация кожи — пропитывание кожи частицами металла при коротком замыкании или сварке.
- Механические повреждения — самопроизвольная судорога мышц, приводящая к падению. При падении происходят переломы, ушибы вывихи суставов и т. д.
- Электроофтальмия — воспаление слизистой оболочки глаз при воздействии излучения электрической дуги.
Существует еще один вид поражения — электрический удар. Этот вид поражения можно условно разделить на 5 групп: без потери сознания; с потерей сознания, связанной с нарушением сердечной деятельности или без нее; клиническая смерть и электрический шок.
Единицы измерения
Работа электрического поля по перемещению заряда измеряется в Дж (Джоуль), заряд в Кл (кулон). Вот, как обозначается напряжение или его единица измерения: отношение этих величин (работа по перемещению в Дж к электрическому заряду в Кл) и является разностью потенциалов, измеряется в вольтах (В) и обозначается U. Разность потенциалов бывает:
- Переменной (амплитуда и полярность изменяются с течением времени, в зависимости от характерной частоты).
- Постоянной (имеет постоянное значение амплитуды и полярность есть величина постоянная).
А также у единиц измерения есть приставки, например, кВ (Киловольт = 1000В) и МВ (мегавольт = 1000000В). Существуют о совсем низкие значения, например, мВ (милливольт = 0,001В).
Цепи переменного и постоянного тока
В цепях постоянного и переменного тока U обладает различными свойствами и производит иные влияния на проводники. Для постоянного напряжения существуют законы по вычислению его характеристик, но для переменного способы вычисления показателей заметно отличаются. Разберем более подробно все различия и сходства.
Расчет и анализ цепей выполняется при помощи закона Ома: сила тока полной цепи прямо пропорциональна напряжению и обратно пропорциональна сумме сопротивлений цепи и источника питания.
Следствие из закона при условии пренебрежения внутренним сопротивлением источника электричества: сила тока участка цепи прямо пропорциональна ЭДС и обратно пропорциональна сопротивлению этого участка.
Запись закона Ома, из которого следует формула напряжения, тока и сопротивления: I = U / (Rц + Rвн), где I — сила тока, U — ЭДС, Rц — сопротивление цепи, Rвн — внутреннее сопротивление источника питания.
Формула силы тока через сопротивление и напряжение: I = U / Rц.
Формула напряжения электрического тока: U = I * Rц.
Для расчета мощности необходимо U умножить на I: P = U * I = U * U / R, где P — мощность.
Переменное однофазное напряжение
В цепях для переменного тока происходят совершенно другие явления и процессы, для них справедливы другие законы. Различают такие основные виды:
- Мгновенное (разность потенциалов в конкретный промежуток времени: u = u (t)).
- Амплитудное значение (максимальное значение мгновенного U в момент времени: u (t) = Uм * sin (wt + f), где w — угловая частота, t — конкретный момент времени и f — угол начальной фазы напряжения).
- Среднее значение (для синусоиды равно нулю).
- Среднеквадратичное — Uq (U за весь период колебаний и для синусоиды имеет вид: Uq = 0,707 * Uм).
- Средневыпрямленное — Uv (среднее значение модуля U: Um примерно равно 0,9 * Uq).
В цепях 3-фазного тока различают 2 вида напряжений: линейное (фаза-фаза) и фазное (фаза-ноль). При соединении в цепь «треугольником» фазное и линейное U равны. В случае соединения «звездой» — фазное в 1,732050808 раз меньше линейного.
Рекомендации по выбору прибора
Для расчетов необходимо измерять значения величин электричества. Существуют специальные приборы, которые помогают произвести точные расчеты. Для измерения разности потенциалов применяют вольтметр.
Вольтметр (вольт — единица измерения ЭДС, метр — измеряю) — прибор для измерения ЭДС в цепи, подключаемый параллельно участку, на котором необходимо провести замер.
Для конкретного случая необходимо применять тот или иной прибор. Для более точных расчетов приобретаются приборы с высоким классом точности. Классификация вольтметров:
- Принцип действия: электромеханические (стрелочные) и электронные.
- Назначение: постоянного и переменного тока, импульсные, селективные и универсальные.
- Конструктивное исполнение: щитовые, переносные и стационарные.
Аналоговый электромеханический вольтметр имеет большие погрешности измерений в высокоомных цепях, но отлично зарекомендовал себя в низкоомных цепях и возможностью модернизации (увеличение значений измерения U за счет добавочного резистора).
Выпрямительный вольтметр обладает более высоким классом точности. Состоит из самого измерительного прибора (обладает чувствительностью к постоянному току) и выпрямительного устройства. Они получили не очень широкое распространение из-за высоких погрешностей, и применяются в качестве сигнальных приборов (примерное значение U).
Цифровые вольтметры применяются в комбинированных приборах-мультиметрах. Поступающее напряжение на клеммы (измерительные щупы) прибора преобразовывается в сигнал при помощи аналого-цифрового преобразователя (АЦП). Происходит отображение на цифровом табло. Этот вид приборов получил широкое применение благодаря высокой точности и универсальности.
Импульсный вольтметр необходимо применять при измерении амплитуд импульсных сигналов и одиночных импульсов.
Основным применением фазочувствительных вольтметров является измерение квадратурных составляющих комплексного напряжения (наличие мнимой и действительной частей) первичной гармоники. Они, как правило, снабжены 2-мя индикаторами для выявления мнимой и действительной частей. Они получили широкое применение в измерении АФХ (амплитудно-фазовая характеристика) для подбора деталей и настройки усилителей.
Для измерения номинала постоянного напряжения используются вольтметры подгруппы В2 (вольтметры для постоянного напряжения), а также В7 (универсальные).
Для определения переменного напряжения необходимо использовать устройства из подгруппы В3 или универсального типа (В7). Однако часто в этих вольтметрах применяются специальные преобразователи из переменного напряжения в постоянное.
В3 и В7 рассчитаны только для определения среднеквадратического гармонического напряжения. В этих электроизмерительных приборах возможно применение детекторов (преобразователей): пикового, выпрямительного и квадратичного. Оптимальным вариантом является вольтметр на квадратичном детекторе, при этом измеряемое значение выдается напрямую без всяких преобразований. Измерительные приборы на пиковых и выпрямительных детекторах пересчитывают значения, тем самым уменьшая точность измерений. Для измерения периодического негармонического напряжения выбирают вольтметр на квадратичном детекторе.
Таким образом, расчет напряжения играет важную роль в электротехнике. Расчеты для переменных и постоянных цепей электрического тока существенно отличаются, в результате чего необходимо определить сначала тип тока, а затем производить расчеты. Но также необходимо соблюдать технику безопасности при работах с электричеством. Ведь ее основные положения основаны на горьком опыте человечества.
«Как увеличить напряжение или ток (мощность) Электродвигателя?» – Яндекс.Кью
Итак, для проведения работ вам следует «вооружиться»:
набором проводов разного сечения;
тестером;
частотным преобразователем;
источником тока с изменяемой ЭДС.
Сначала необходимо подключить электродвигатель к имеющемуся у вас источнику тока и изменяемой ЭДС и увеличить ее значение. Напряжение в обмотках должно увеличиваться соответственно и поравняться со значением ЭДС (если не принимать во внимание потери в подводящих проводниках, но они незначительны).Для расчета увеличения мощности двигателя определите значение увеличения напряжения и возведите эту цифру в квадрат. Например, если напряжение на обмотках выросло в два раза (со 110В до 220В), мощность двигателя увеличилась в четыре раза.
Иногда самый рациональный способ повысить мощность электродвигателя – перемотать обмотку. Во многих моделях это медный проводник. Вам следует взять провод из того же материала и той же длины, но большего сечения. Мощность двигателя (и ток в проводе) увеличатся во столько же раз, во сколько снизится сопротивление обмотки. Следите за тем, чтобы напряжение на обмотках оставалось неизменным.
Расчет в этом случае тоже достаточно прост. Разделите большую цифру сечения провода на меньшую. Если провод сечением 0.5 мм заменен проводом сечением 0.75 мм, показатель мощности вырастает в 1.5 раза.
Если вы включаете асинхронный трехфазный двигатель в однофазную бытовую сеть, на первую обмотку подается фаза, на второй фаза сдвигается конденсатором, на третьей сдвиг фаз отсутствует. Именно последняя обмотка создает момент вращения в противоположном направлении (тормозящий момент). Увеличить полезную мощность двигателя в этом случае можно путем отключения третьей обмотки. Это приведет к исчезновению тормозящего момента, генерируемого при работе всех обмоток, и, соответственно, повышению мощности. Данный метод удобен в том случае, когда одна обмотка у двигателя уже сгорела – двух оставшихся вам вполне хватит для подключения и обеспечения работы агрегата.
Еще лучшего результата вы достигнете, поменяв местами выводы третьей обмотки и создав таким образом момент вращения в правильном направлении. В этом случае двигатель «выдаст» более 50% мощности от номинала. Эту обмотку рекомендуется подключать через конденсатор с правильно подобранной емкостью.
Об этом и не только — https://rusvolt.su/schetkoderzhateli/amnk/shetkoderjatel-amnk-2-20×32
Мощность трехфазной сети и ее измерение
В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.
С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.
Рассмотрим трехфазную систему питания
Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или А, В, С.
Схема соединения звезда:
Схема соединения фаз в звездуДля соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:
В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:
Фазное напряжение в цепиЛинейное – между фазами:
Линейное напряжениеПоэтому полная мощность трехфазной сети для такого типа соединения будет равна:
Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:
Или:
Соответственно для активной:
Для реактивной:
Схема соединения в треугольник
Схема соединения обмоток в треугольникКак видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:
И соответственно:
Измерение мощности
Измерение активной мощности в сетях производится с помощью ваттметра
Цифровой ваттметрАналоговый ваттметрВ зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:
Схема включения ваттметра при симметричной нагрузкеЗдесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.
Измерение при несимметричной нагрузке:
Схема включения ваттметра при несимметричной нагрузкеЭтот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.
Измерении в цепи без нулевого проводника:
Схема включения ваттметра при отсутствии нулевого проводаЭта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа
IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:
Векторная диаграмма включения двух ваттметров при различных видах нагрузкиМы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.
Из диаграммы следует, что мы можем определить показание приборов аналитически:
Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L) показания W1 меньше чем W2 (W1<W2), при φ>600 показания W1 вообще отрицательные (W1<0).
При активной и емкостной(R-C) и W1>W2, а при φ<-600 показания W2 <0.
При современном развитии техники появились цифровые ваттметры. Они в отличии от аналоговых меньше в размерах, гораздо легче и менее габаритны. Более того цифровые ваттметры могут фиксировать ток, напряжение, измерять cosφ в сети и другое. Они позволяют в режиме реального времени отслеживать различные величины и выдавать предупреждения при их отклонении. Это очень удобно и не требуется проводить измерения тока, напряжения, а потом математически это все высчитывать. Цифровой ваттметр заключен в корпус и подключается (для бытовых потребителей) самым обычным способом – как и обычный потребитель — втыканием вилки в розетку.
В чем разница кВт и кВа ?
Вольт-ампер (ва) — это единица полной мощности переменного тока, обозначается ВА или VA. Полная мощность переменного тока определяется как произведение действующих значений тока в цепи (в амперах) и напряжения на её зажимах (в вольтах).Ватт (вт) — единица мощности. Названа в честь шотландско-ирландского изобретателя-механика Джеймса Уатта, обозначается вт или W. Ватт -это мощность, при которой за 1 сек совершается работа, равная 1 джоулю. Ватт как единица электрической (активной) мощности равен мощности не изменяющегося электрического тока силой 1 ампер при напряжении 1 вольт.
При выборе стабилизатора или электростанции следует помнить, что кВА — это полная потребляемая мощность, а кВт — это активная (затраченная на совершение полезной работы) мощность. Полная мощность – это сумма реактивной и активной мощностей. Зачастую разные потребители имеют разное соотношение полной и активной мощности. Поэтому для определения суммарной мощности всех потребителей необходимо сложение полных мощностей оборудования, а не активных мощностей.
Номинальная мощность
В электротехнической промышленности принято мощность большинства потребителей определять в Ваттах. Это так называемая активная мощность – мощность, выделяющаяся на чисто резистивной нагрузке(Нагреватели,телевизоры,лампочки и т.п.). Активная мощность целиком идет на полезную работу (нагрев, механическое движение), и обычно именно ее понимают под потребляемой мощностью.Если потребитель активный (чайник, лампа накаливания, ТЭН), то другой информации о нем не требуется, на таких потребителях пишут (как правило) номинальную мощность в Вт, номинальное напряжение и все. Здесь нет вопросов о косинусе «фи», т.к. этот «фи» (угол между током и напряжением данных потребителей) равен нулю, косинус нуля равен 1, — отсюда, Активная мощность («P») равна произведению тока через потребитель и напряжению на потребителе, умноженному на этот пресловутый косинус «фи», т.е. P = I*U*Сos (fi) = P = I*U*1 = P=I*U.
Простой пример для тена с cos фи=1:
Полная мощность S=10 кВА cos фи=1
Тогда активная мощность P=10*1=10 кВт
У потребителей, имеющих в своем составе не только активное сопротивление, но и любое реактивное (индуктивность, емкость), принято писать на шильдике величину «P» в Ваттах, а так же указывать величину косинуса «фи». Величина косинуса «фи» определяется параметрами самих этих потребителей, а точнее — соотношением их активных и реактивных сопротивлений.
Например, обычный электродвигатель имеет на бирке: P=5кВт, Сos(fi)=0.8. Это значит следующее: Данный двигатель при работе (в номинальном режиме) потребляет полную Полную мощность (сумму активной и реактивной мощностей). Активную мощность «S» равную P/Cos(fi)=5/0,8= 6,25 кВа и Реактивную мощность «Q» в размере U*I/Sin(fi).
Для нахождения номинального тока двигателя нужно его Полную мощность «S» и разделить на рабочее напряжение (220), впрочем, ток указывается, как правило, на шильдике. Может появиться вопрос, почему же на генераторах (трансформаторах, стабилизаторах напряжения) указывается мощность в ВА (вольт-амперах)? А как ее еще указать? Допустим, что на стабилизаторе напряжения указана мощность 10000 Ва. Это должно значить, что, если я подцеплю кучу ТЭНов к данному трансформатору, то мощность, отдаваемая трансформатором в ТЭНы (в номинальном режиме работы трансформатора) не может превышать 10000 Вт. Вроде все сходится. А если я захочу нагрузить стабилизатор напряжения катушкой индуктивности или электродвигателем с Сos(fi)=0.8? (кучей катушек)? И данный стабилизатор будет отдавать мощность уже 8000 Вт?а при Сos(fi)=0.85 -8500 Вт. Тогда надпись на шильдике 10000 Ва будет уже не правомерной. Поэтому, мощность генераторов (трансформаторов и стабилизаторов напряжения) может определяться только в Полной мощности (в нашем случае 1000 кВА), а как ты ее (Полную мощность) будешь использовать — твое дело.
[i]Теперь можно перейти к подбору
стабилизатора напряжения, электростанции,
источника бесперебойного питания, инвертора.[/i]
Коэффициент мощности, косинус «фи»
Это отношение средней мощности переменного тока к произведению действующих значений напряжения и тока. Наибольшее значение коэффициента мощности равно 1. В случае синусоидального переменного тока, коэффициент мощности равен косинусу угла сдвига фаз между синусоидами напряжения и тока и определяется параметрами цепи: Сos ф = r/Z, где ф («фи») — угол сдвига фаз, r — активное сопротивление цепи, Z — полное сопротивление цепи. Коэффициент мощности может отличаться от 1 и в цепях с чисто активными сопротивлениями, если в них содержатся нелинейные участки. В этом случае коэффициент мощности уменьшается вследствие искажения формы кривых напряжения и тока.
Коэффициент мощности электрической цепи — это косинус фазового угла между основаниями кривых напряжения и тока. Согласно другому определению, коэффициент мощности — это соотношение активной и полной энергий. Коэффициент мощности (Сos φ = Активная мощность/Полная мощность = P/S (Вт/ВА), потребляемых нагрузкой.
Коэффициент мощности — комплексный показатель, характеризующий линейные и нелинейные искажения, вносимые нагрузкой в электросеть.
Типовые значения коэффициента мощности:
— 1.00 — идеальное значение;
— 0.95 — хороший показатель;
— 0.90 — удовлетворительный показатель;
— 0.80 — средний показатель современных электродвигателей;
— 0.70 — низкий показатель;
— 0.60 — плохой показатель.
Ома — Как соотносятся напряжение, ток и сопротивление | Закон Ома
Первая и, возможно, самая важная взаимосвязь между током, напряжением и сопротивлением называется законом Ома, который был открыт Георгом Симоном Омом и опубликован в его статье 1827 года «Гальваническая цепь, исследованная математически».
Напряжение, ток и сопротивление
Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться. Это непрерывное движение электрического заряда через проводники цепи называется током , и его часто называют «потоком», как поток жидкости через полую трубу.
Сила, побуждающая носители заряда «течь» в цепи, называется напряжением . Напряжение — это особая мера потенциальной энергии, которая всегда относительна между двумя точками.
Когда мы говорим об определенном количестве напряжения, присутствующем в цепи, мы имеем в виду измерение того, сколько потенциальной энергии существует для перемещения носителей заряда из одной конкретной точки в этой цепи в другую конкретную точку. Без ссылки на две конкретные точки термин «напряжение» не имеет значения.
Ток имеет тенденцию проходить через проводники с некоторой степенью трения или сопротивления движению. Это противодействие движению правильнее называть сопротивлением . Сила тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующей прохождению тока.
Как и напряжение, сопротивление — это величина, относительная между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» или «поперек» двух точек в цепи.
Единицы измерения: вольт, ампер и ом
Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, мы должны уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любой другой вид физической величины. Для массы мы можем использовать единицы «килограмм» или «грамм».
Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. Вот стандартные единицы измерения электрического тока, напряжения и сопротивления:
«Символ», присвоенный каждой величине, представляет собой стандартную букву алфавита, используемую для представления этой величины в алгебраическом уравнении.Подобные стандартизированные буквы распространены в физических и технических дисциплинах и признаны во всем мире.
«Аббревиатура единицы» для каждой величины представляет собой алфавитный символ, используемый в качестве сокращенного обозначения для конкретной единицы измерения. И да, этот странно выглядящий символ «подкова» — это заглавная греческая буква Ω, просто символ в иностранном алфавите (извинения перед читателями-греками).
Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М.Ампер, вольт после итальянского Алессандро Вольта и Ом после немца Георга Симона Ома.
Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как «I» для тока кажется немного странным. Считается, что буква «I» должна представлять «интенсивность» (потока заряда), а другой символ напряжения, «E», означает «электродвижущую силу». Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «Я».”
Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах зарезервировано «E» для обозначения напряжения на источнике (таком как батарея или генератор) и «V» для обозначения напряжения на чем-либо еще.
Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенным» значением). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», в то время как пик напряжения при ударе молнии в тот самый момент, когда он попадает в линию электропередачи, скорее всего, будет обозначается строчной буквой «е» (или строчной буквой «v»), чтобы обозначить это значение как имеющееся в один момент времени.
То же самое соглашение о нижнем регистре справедливо и для тока, строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.
Кулон и электрический заряд
Одна из основополагающих единиц электрического измерения, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, — это единица кулонов , которая представляет собой меру электрического заряда, пропорционального количеству электронов в несбалансированном состоянии.Один кулон заряда равен 6 250 000 000 000 000 000 электронов.
Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается заглавной буквой «C». Бывает так, что единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этих терминах ток — это скорость движения электрического заряда по проводнику.
Как указывалось ранее, напряжение является мерой потенциальной энергии на единицу заряда , доступной для стимулирования протекания тока из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общая метрическая единица для энергии любого вида — джоулей , что равняется количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении).
В британских подразделениях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фута. Проще говоря, требуется около 1 джоуля энергии, чтобы поднять гирю весом 3/4 фунта на 1 фут от земли или перетащить что-то на расстояние 1 фут, используя параллельную тяговую силу 3/4 фунта.В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.
Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.
Уравнение закона Ома
Основное открытиеОма заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, прямо пропорциональна напряжению, приложенному к нему при любой заданной температуре.Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:
В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R соответственно:
Анализ простых схем с помощью закона Ома
Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:
В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа).Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.
В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):
Какой ток (I) в этой цепи?
В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):
Какое сопротивление (R) дает лампа?
В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):
Какое напряжение обеспечивает аккумулятор?
Техника треугольника закона Ома
Закон Ома — очень простой и полезный инструмент для анализа электрических цепей.Он так часто используется при изучении электричества и электроники, что серьезный студент должен запомнить его. Для тех, кто еще не знаком с алгеброй, есть уловка, чтобы запомнить, как решить для любого количества, учитывая два других.
Сначала расположите буквы E, I и R в виде треугольника следующим образом:
Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:
Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:
Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:
В конце концов, вам придется быть знакомым с алгеброй, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений.Если вы знакомы с алгеброй, все, что вам нужно сделать, это зафиксировать E = IR в памяти и вывести из нее две другие формулы, когда они вам понадобятся!
ОБЗОР:
- Напряжение измеряется в вольт , обозначается буквами «E» или «V».
- Ток измеряется в ампер , обозначается буквой «I».
- Сопротивление измеряется в Ом. обозначается буквой «R».
- Закон Ома: E = IR; I = E / R; R = E / I
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Попробуйте наш калькулятор закона Ома в разделе «Инструменты».
Зависимость тока от напряжения — разница и сравнение
Связь между напряжением и током
Ток и напряжение — две основные величины в электричестве. Напряжение — это причина, а ток — это следствие.
Напряжение между двумя точками равно разности электрических потенциалов между этими точками. На самом деле это электродвижущая сила (ЭДС), ответственная за движение электронов (электрический ток) по цепи.Поток электронов, приводимый в движение напряжением, называется током. Напряжение представляет собой потенциал каждого кулоновского электрического заряда для выполнения работы.
В следующем видео объясняется взаимосвязь между напряжением и током:
Схема
Электрическая цепь с источником напряжения (например, аккумулятором) и резистором.Источник напряжения имеет две точки с разностью электрических потенциалов. Когда между этими двумя точками существует замкнутый контур, он называется цепью, и ток может течь.При отсутствии цепи ток не будет течь, даже если есть напряжение.
Обозначения и единицы
Заглавная курсивная буква I обозначает ток. Стандартная единица измерения — Ампер (или Ампер), обозначаемая буквой A. Единица измерения тока в системе СИ — кулон в секунду .
1 ампер = 1 кулон в секунду.
Один ампер тока соответствует одному кулону электрического заряда (6,24 x 10 18 носителей заряда), проходящего мимо определенной точки в цепи за одну секунду.Устройство, используемое для измерения тока, называется амперметром .
Заглавная курсивная буква В обозначает напряжение.
1 вольт = 1 джоуль / кулон.
Один вольт перемещает один кулон (6,24 x 10 18 ) носителей заряда, таких как электроны, через сопротивление в 1 Ом за одну секунду. Вольтметр используется для измерения напряжения.
Поля и интенсивность
Электрический ток всегда создает магнитное поле.Чем сильнее ток, тем сильнее магнитное поле.
Напряжение создает электростатическое поле. По мере увеличения напряжения между двумя точками электростатическое поле становится более интенсивным. По мере увеличения расстояния между двумя точками, имеющими заданное напряжение по отношению друг к другу, интенсивность электростатического заряда между точками уменьшается.
Последовательные и параллельные соединения
В последовательной цепи
Напряжения суммируются для компонентов, соединенных последовательно.Токи одинаковы во всех последовательно соединенных компонентах.
Электрические компоненты в последовательном соединенииНапример, если батарея 2 В и батарея 6 В подключены последовательно к резистору и светодиоду, ток через все компоненты будет одинаковым (скажем, 15 мА), но напряжения будут разными (5 В на резисторе и 3 В на резисторе). светодиод). Эти напряжения складываются с напряжением батареи: 2 В + 6 В = 5 В + 3 В.
В параллельной цепи
Сумма токов для компонентов, соединенных параллельно.Напряжения одинаковы на всех компонентах, подключенных параллельно.
Электрические компоненты при параллельном подключенииНапример, если одни и те же батареи подключены к резистору и светодиоду параллельно, напряжение через компоненты будет одинаковым (8 В). Однако ток 40 мА через аккумулятор распределяется по двум путям в цепи и прерывается до 15 мА и 25 мА.
Список литературы
ЗаконОма: определение и взаимосвязь между напряжением, током и сопротивлением — видео и стенограмма урока
Закон Ома
Взаимосвязь между напряжением, током и сопротивлением описывается законом Ома .Это уравнение, i = v / r , говорит нам, что ток, i , протекающий по цепи, прямо пропорционален напряжению, v , и обратно пропорционален сопротивлению, r . Другими словами, если мы увеличим напряжение, то увеличится и ток. Но, если мы увеличим сопротивление, то ток уменьшится. Мы увидели эти концепции в действии с садовым шлангом. Увеличение давления привело к увеличению потока, но изгиб шланга увеличил сопротивление, что привело к уменьшению потока.
Как написано здесь уравнение, было бы легко использовать закон Ома, чтобы вычислить ток, если бы мы знали напряжение и сопротивление. Но что, если бы мы вместо этого захотели вычислить напряжение или сопротивление? Один из способов сделать это — переставить члены уравнения для решения других параметров, но есть более простой способ. Приведенная выше диаграмма даст нам соответствующее уравнение для решения любого неизвестного параметра без использования алгебры.Чтобы использовать эту диаграмму, мы просто закрываем параметр, который пытаемся найти, чтобы получить правильное уравнение. Это станет более понятным, когда мы начнем его использовать, поэтому давайте рассмотрим несколько примеров.
Закон Ома в действии
Ниже представлена простая электрическая схема, которую мы будем использовать для выполнения наших примеров. Наш источник напряжения — это аккумулятор, подключенный к лампочке, которая обеспечивает сопротивление электрическому току. Для начала предположим, что наша батарея имеет напряжение 10 вольт, электрическая лампочка имеет сопротивление 20 Ом, и нам нужно вычислить ток, протекающий по цепи.Используя нашу диаграмму, мы закрываем параметр, который мы пытаемся найти, то есть ток, или i , и это оставляет нам напряжение v над сопротивлением r . Другими словами, чтобы найти ток, нам нужно разделить напряжение на сопротивление. Делая математику, 10 вольт, разделенные на 20 Ом, дают половину ампера тока, протекающего в цепи.
Теперь давайте увеличим напряжение, чтобы посмотреть, что происходит с током.Мы будем использовать ту же лампочку, но перейдем на 20-вольтовую батарею. Используя то же уравнение, что и раньше, мы разделим 20 вольт на 20 Ом, и мы получим 1 ампер тока. Как мы видим, удвоение напряжения привело к удвоению тока. Это имеет смысл, когда мы думаем о садовом шланге. Если бы мы увеличили давление в шланге, можно было бы ожидать, что поток воды также увеличится. Всегда полезно перепроверить свою работу, спросив, соответствуют ли результаты тому, что вы ожидали.
Если бы мы увеличили сопротивление лампочки, что бы вы ожидали, что произойдет с током? Чтобы выяснить это, давайте поменяем существующую лампочку на другую с сопротивлением 40 Ом.Поскольку мы все еще ищем ток, мы используем то же уравнение, что и раньше. Разделив 20 вольт на 40 Ом, мы получим половину ампера тока. Этот результат говорит нам, что удвоение сопротивления уменьшило ток вдвое. Вы этого ожидали? Если вернуться к нашему шлангу, логично предположить, что перегиб в шланге уменьшит поток воды, точно так же, как увеличение сопротивления в цепи уменьшит ток.
До сих пор мы только рассчитали ток в цепи, но что, если бы кто-то поменял нашу лампочку, когда мы не смотрели, и нам нужно было вычислить сопротивление новой? Что ж, мы знаем, что напряжение нашей батареи составляет 20 вольт, и мы можем измерить ток в цепи с помощью инструмента, называемого амперметром, поэтому все, что нам осталось, — это выполнить некоторые вычисления.Используя нашу диаграмму, мы закрываем параметр, который мы пытаемся найти, а именно сопротивление, r . Схема теперь показывает нам, что нам нужно разделить напряжение на ток. Если наш амперметр измерил ток в 5 ампер, протекающий по цепи, то сопротивление будет равно 20 вольт, разделенным на 5 ампер, что составляет 4 Ом
Наконец, представьте, что кто-то заменил нашу батарею, и нам нужно выяснить ее напряжение.Процесс почти такой же. Мы знаем, что наша новая лампочка имеет сопротивление 4 Ом, и мы можем измерить ток в цепи с помощью амперметра. Используя диаграмму, мы покрываем напряжение v , которое говорит нам, что нам нужно умножить ток на сопротивление. Если бы амперметр измерял ток в 3 ампера, тогда напряжение было бы 3 ампера, умноженным на 4 Ом, что составляет 12 вольт. Вот и все. Зная любые два из трех параметров, мы всегда можем вычислить третий, используя закон Ома.
Резюме урока
Закон Ома определяет соотношение между напряжением, током и сопротивлением в электрической цепи: i = v / r . Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Это означает, что увеличение напряжения приведет к увеличению тока, а увеличение сопротивления приведет к уменьшению тока. Зная любые два из трех параметров, мы можем вычислить третий, неизвестный параметр.Мы можем сделать это, переставив члены в уравнении закона Ома или используя диаграмму, приведенную выше в уроке. Скрытие параметра, который мы пытаемся найти, показывает нам соответствующее уравнение с использованием двух известных параметров.
Результаты обучения
По завершении этого урока вы сможете:
- Описывать взаимосвязь между напряжением, током и сопротивлением, используя закон Ома
- Напишите уравнение закона Ома
- Объясните, как можно найти любую из трех переменных в уравнении закона Ома, если вы знаете две другие.
- Рассчитайте любую из трех переменных, используя уравнение закона Ома
Как соотносятся напряжение, ток и сопротивление: Закон Ома
Том I — Округ Колумбия »ЗАКОН ОМА»Электрическая цепь образуется, когда создается токопроводящий путь для позволяют свободным электронам непрерывно двигаться.Это непрерывное движение Свободные электроны, проходящие через проводники цепи, называют током , , и его часто называют «потоком», как поток жидкости через полую трубу.
Сила, побуждающая электроны «течь» в цепи, называется напряжением . Напряжение — это особая мера потенциальной энергии, которая всегда относительный между двумя точками. Когда мы говорим об определенном количестве напряжение, присутствующее в цепи, мы имеем в виду измерение о том, сколько потенциальной энергии существует для перемещения электронов из одной конкретной точки в этой цепи в другую конкретную точку.Без ссылки на двух конкретных точек термин «напряжение» не имеет значения.
Свободные электроны имеют тенденцию перемещаться по проводникам с некоторой степенью трение или противодействие движению. Это противодействие движению больше правильно называется сопротивление . Количество тока в цепи зависит от количества доступного напряжения, чтобы мотивировать электронов, а также количество сопротивления в цепи, чтобы противостоять электронный поток.Как и напряжение, сопротивление — величина относительная. между двумя точками. По этой причине величины напряжения и сопротивление часто указывается как «между» или «поперек» двух точек в цепи.
Чтобы иметь возможность делать значимые заявления об этих количествах в цепей, мы должны иметь возможность описывать их количество в одном и том же способ, которым мы могли бы количественно определить массу, температуру, объем, длину или любой другой другой вид физической величины. Для массы мы можем использовать единицы «фунт» или «грамм».»Для температуры мы можем использовать градусы Фаренгейта или градусов Цельсия. Вот стандартные единицы измерения для электрический ток, напряжение и сопротивление:
«Символ», указанный для каждого количества, является стандартным буквенным обозначением. буква, используемая для обозначения этой величины в алгебраическом уравнении. Подобные стандартизированные буквы распространены в дисциплинах физика и техника, и признаны во всем мире. Единица аббревиатура «для каждого количества представляет собой используемый алфавитный символ. как сокращенное обозначение конкретной единицы измерения.А также, да, этот странный на вид символ «подкова» — заглавная греческая буква Ω, просто символ в иностранном алфавите (извинения перед греческими читателями здесь).
Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта и Ом в честь немца Георга Симона Ома.
Математический символ для каждой величины также имеет значение.В «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как «I» для тока кажется немного странным. Считается, что «я» должно было представлять «Интенсивность» (потока электронов) и другой символ напряжения, «E». расшифровывается как «Электродвижущая сила». Из каких исследований я смог Да, похоже, есть некоторые споры о значении «я». Символы «E» и «V» по большей части взаимозаменяемы, хотя некоторые тексты зарезервируйте «E» для обозначения напряжения на источнике (таком как батарея или генератор) и «V» для обозначения напряжения на любом другом элементе.
Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенное» значение). Например, напряжение батареи, которое стабильный в течение длительного периода времени, будет обозначаться заглавной буквой буква «Е», а пик напряжения удара молнии в самом момент, когда он попадет в линию электропередачи, скорее всего, будет обозначен строчная буква «е» (или строчная буква «v») для обозначения этого значения как находясь в один момент времени.Это же соглашение о нижнем регистре выполняется верно и для тока, строчная буква «i» обозначает ток в некоторый момент времени. Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.
Одна основополагающая единица электрического измерения, которой часто учат в начало курсов электроники, но впоследствии редко используемое, блок кулон , который представляет собой меру электрического заряда, пропорциональную количеству электроны в несбалансированном состоянии.Один кулон заряда равен 6 250 000 000 000 000 000 электронов. Символ электрического заряда количество — заглавная буква «Q» с единицей измерения кулоны. сокращенно заглавной буквой «C». Так получилось, что агрегат для поток электронов, amp, равен 1 кулону электронов, проходящих через заданная точка в цепи за 1 секунду времени. В этих терминах ток — это скорость движения электрического заряда по проводнику.
Как указывалось ранее, напряжение является мерой потенциальной энергии на единицу заряда , доступной для перемещения электронов из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт» то есть, мы должны понять, как измерить эту величину, которую мы называем «потенциал энергия ». Общей единицей измерения энергии любого вида является джоулей , равно количеству работы, выполненной приложенной силой в 1 ньютон через движение на 1 метр (в том же направлении). В британских частях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фут. Проще говоря, требуется около 1 джоуля энергии для поднимите гирю 3/4 фунта на 1 фут от земли или перетащите что-нибудь расстояние в 1 фут с использованием параллельного тягового усилия 3/4 фунта.Определенный в этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, батарея на 9 вольт выделяет 9 джоулей энергии на каждый кулон электронов, перемещаемых по цепи.
Эти единицы и символы электрических величин станут очень важно знать, когда мы начинаем исследовать отношения между ними в схемах. Первые и, пожалуй, самые важные отношения Между током, напряжением и сопротивлением называется закон Ома, открытый Георгом Саймоном Омом и опубликованный в его статье 1827 года, . Гальваническая цепь, исследованная математически, .Главное открытие Ома заключалось в том, что величина электрического тока через металлический проводник в цепи прямо пропорционально напряжение, приложенное к нему, для любой заданной температуры. Ом выражен его открытие в виде простого уравнения, описывающего, как напряжение, ток и сопротивление взаимосвязаны:
В этом алгебраическом выражении напряжение (E) равно току (I) умноженное на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R, соответственно:
Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:
В приведенной выше схеме есть только один источник напряжения (аккумулятор слева) и только один источник сопротивления току. (лампа справа).Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.
В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):
Какая величина тока (I) в этой цепи?
В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):
Какое сопротивление (R) предлагает лампа?
В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):
Какое напряжение обеспечивает аккумулятор?
Закон Ома — очень простой и полезный инструмент для анализа электрических схемы.Он так часто используется при изучении электричества и электроники, которую нужно сохранить в памяти серьезными ученик. Для тех, кто еще не знаком с алгеброй, есть трюк с запоминанием того, как решить для любого одного количества, учитывая другое два. Сначала расположите буквы E, I и R в виде треугольника следующим образом:
Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:
Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:
Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:
В конце концов, вам придется познакомиться с алгеброй, чтобы серьезно изучать электричество и электронику, но этот совет может сделать ваш первый расчеты запомнить немного легче.Если тебе комфортно с алгебры, все, что вам нужно сделать, это зафиксировать E = IR в памяти и получить другие две формулы из того, когда они вам понадобятся!
- ОБЗОР:
- Напряжение измеряется в вольт , обозначается буквами «E» или «V».
- Ток измеряется в ампер , обозначается буквой «I».
- Сопротивление измеряется в Ом. обозначается буквой «R».
- Закон Ома: E = IR; I = E / R; R = E / I
Электрический ток — Веб-формулы
Электрический ток определяется по формуле:I = В / R
Соответствующие единицы:
ампер (А) = вольт (В) / Ом (Ом)
Эта формула получена из закона Ома. .Где у нас:
В: напряжение
I: ток
R: сопротивление
Если электрическая мощность и полное сопротивление известны, то ток можно определить по следующей формуле:
I = √ ( P / R )
Соответствующие единицы:
Ампер (А) = √ (Ватт (Вт) / Ом (Ом))
Где P — электрическая мощность.
Электрический ток
Скорость потока заряда через поперечное сечение некоторой области металлического провода (или электролита) называется током через эту область.
Если скорость потока заряда непостоянна, тогда ток в любой момент задается дифференциальным пределом: I = dQ / dt.
Если заряд Q течет по цепи в течение времени t, то
I = Q / t.
Единица измерения тока S.I называется ампер (А) (кулон в секунду).
1 ампер = 6,25 × 10 8 электронов / сек
В металлических проводниках ток возникает из-за движения электронов, тогда как в электролитах и ионизированных газах как электроны, так и положительные ионы движутся в противоположном направлении.Направление тока принимается за направление движения положительных зарядов.
В проводимости, хотя ток возникает только за счет электронов, ранее предполагалось, что ток возникает из-за положительных зарядов, протекающих от положительного полюса батареи к отрицательному. Поэтому направление тока считается противоположным потоку электронов.
Если ток постоянный: Δq = I.Δt
функция времени:
Заряд = Площадь под графиком = ½ × t 0 × I 0
To Найти ток в электрической цепи
Для простой цепи или одиночного провода мы имеем:
Для сложной цепи с более чем одним проводом мы можем определить ток с помощью двух законов Кирхгофа
Первый закон: Этот закон основан на на принципе сохранения заряда и утверждает, что в электрической цепи (или сети проводов) алгебраическая сумма токов, встречающихся в точке, равна нулю.
Стрелка, отмеченная на схеме, представляет направление обычного тока, то есть направление потока положительного заряда, тогда как направление потока электронов дает направление электронного тока, противоположное направлению обычного тока.
I 1 + I 4 + I 5 = I 3 + I 2 + I 6
Второй закон: Алгебраическая сумма произведения тока и сопротивление в любом замкнутом контуре цепи равно алгебраической сумме электродвижущих сил, действующих в этом контуре.
Математически.
Электродвижущие силы — ЭДС () источника определяется как работа, совершаемая на единицу заряда при прохождении положительного заряда через гнездо ЭДС от конца с низким потенциалом к концу с высоким потенциалом. Таким образом,
𝜖 = w / Q
Когда ток не течет, ЭДС источника точно равна разности потенциалов между его концами. Единица ЭДС такая же, как и у потенциала, то есть вольт.
Средний поток электронов в проводнике, не подключенном к батарее, равен нулю, т.е. количество свободных электронов, пересекающих любой участок проводника слева направо, равно количеству электронов, пересекающих участок проводника справа налево. ток не течет по проводнику, пока он не будет подключен к батарее.
Скорость дрейфа свободных электронов в металлическом проводнике
В отсутствие электрического поля свободные электроны в металле беспорядочно вращаются во всех направлениях, поэтому их средняя скорость равна нулю.При приложении электрического поля они ускоряются в направлении, противоположном направлению поля, и поэтому имеют общий дрейф в этом направлении. Однако из-за частых столкновений с атомами их средняя скорость очень мала. Эта средняя скорость, с которой электроны движутся в проводнике под действием разности потенциалов, называется дрейфовой скоростью .
Если E — приложенное поле, e — заряд электрона, m — масса электрона и τ — временной интервал между последовательными столкновениями (время релаксации), то ускорение электрона составляет
Поскольку средняя скорость сразу после столкновения равна нулю, а непосредственно перед следующим столкновением это τ, скорость дрейфа должна быть:
Если I — ток через проводник и n — это количество свободных электронов на единицу объема, тогда можно показать, что:
Подвижность µ носителя заряда определяется как скорость дрейфа на единицу электрического поля:
Плотность тока (J)
(i)
(ii) S.I Единица J = Am -2 .
(iii) Плотность тока — это векторная величина, ее направление — это направление потока положительного заряда в данной точке внутри проводника.
(iv) Размеры плотности тока = [M 0 L -2 T o A 1 ]
Носители тока: заряженные частицы, поток которых в определенном направлении составляет электрический ток, являются носителями тока. . Носители тока могут иметь положительный или отрицательный заряд.Ток переносится электронами в проводниках, ионами в электролитах, электронами и дырками в полупроводниках.
Пример 1: Частица с зарядом q кулонов описывает круговую орбиту. Если радиус орбиты равен R, а частота орбитального движения частиц равна f, то найти ток на орбите.
Решение: Через любой участок орбиты заряд проходит f раз за одну секунду. Следовательно, через этот участок общий заряд, проходящий за одну секунду, равен fq.По определению i = fq.
Пример 2: Ток в проводе изменяется со временем в соответствии с уравнением I = 4 + 2t, где I — в амперах, а t — в секундах. Вычислите количество заряда, прошедшего через поперечное сечение провода за время от t = 2 с до t = 6 с.
Решение: Пусть dq будет изменением, которое произошло за небольшой интервал времени dt.
Тогда dq = I dt = (4 + 2t) dt
Следовательно, общий заряд, прошедший за интервал t = 2 секунды и t = 6, равен
q = ∫ 6 2 (4 + 2t) dt = 48 кулонов
Пример 3: Дан токоведущий провод неоднородного сечения.Что из следующего является постоянным по всей сети?
(a) Только ток
(b) Ток и скорость дрейфа
(c) Только скорость дрейфа
(d) Ток, скорость дрейфа
Решение : (a)
Пример4 : Когда разность потенциалов на данном медном проводе увеличивается, скорость дрейфа составляет
носители заряда:
(a) Уменьшается
(b) Увеличивается
(c) Остается прежним
(d) Уменьшается до нуля
Решение : (b)
Согласно согласно закону Ома, I V, но I ∝ 1 / V в уравнении мощности.Как?
In I = V / R, ток прямо пропорционален напряжению, но ток обратно пропорционален напряжению в P = VI?
Это еще один запутанный вопрос, который чаще всего задают на собеседованиях по электротехнике и электронике.
Согласно закону Ома, Ток увеличивается при увеличении напряжения (I = V / R), но Ток уменьшается при увеличении напряжения согласно формуле (P = VI). Как объяснить?
т.е.
- Согласно закону Ома: I ∝ V (ток прямо пропорционален напряжению. I = V / R)
- Согласно формуле мощности: I ∝ 1 / V (ток обратно пропорционален напряжению. I = P / V)
Короче говоря, согласно закону Ома (V = IR или I = V / R), который показывает, что ток прямо пропорционален напряжению, но согласно P = VI или I = P / V, он показывает Этот ток обратно пропорционален напряжению.
Давайте проясним путаницу, связанную с утверждением.
P = V x I
На самом деле, это зависит от того, как вы увеличиваете параметры, то есть увеличиваете ли вы напряжение, сохраняя мощность источника постоянной или она меняется.
- Если мощность источника постоянна, ток будет уменьшаться при увеличении напряжения.
- Если вы не заботитесь о мощности и просто замените батарею на новую с более высокой номинальной мощностью, это может увеличить ток при увеличении напряжения, поскольку мощность перестает быть постоянной i.е. мощность также была увеличена.
В случае трансформатора, когда напряжение увеличивается, ток уменьшается, потому что мощность остается постоянной, т.е. мощность на обеих сторонах равна P = VI (без учета коэффициента мощности: Cos θ).
В = I x R
По закону Ома ток (I) прямо пропорционален напряжению (В), если сопротивление (R) и температура остаются постоянными.
Согласно формуле мощности, в ней говорится, что ток обратно пропорционален напряжению, если мощность остается прежней.
Как мы уже знаем, в повышающем трансформаторе, если напряжение увеличивается, ток уменьшается там, где мощность такая же (поскольку трансформатор только повышает или понижает значение тока и напряжения и не меняет значение власть). Точно так же напряжение уменьшается при увеличении тока в понижающем трансформаторе.
То же самое и с генерирующей станцией, где выработка электроэнергии постоянна. Если мощность на стороне генерации улучшится, увеличатся как ток, так и напряжение.
Вкратце:
- Если мощность постоянна = Напряжение обратно пропорционально току , то есть В ∝ 1 / I в P = VxI .
- Если сопротивление и температура постоянны: Напряжение прямо пропорционально току , то есть В I в В = IxR .
Это точная причина , почему по закону Ома ток прямо пропорционален напряжению, но обратно пропорционален формуле напряжения в мощности.
Связанные вопросы / ответы:
Напряжение и ток: каковы сходства и различия?
Если вы новичок в физике электричества, такие термины, как напряжение и ампер , могут показаться почти взаимозаменяемыми в зависимости от способа их использования. Но на самом деле это очень разные величины, хотя они тесно связаны тем, как они работают вместе в электрической цепи, как это описано в законе Ома.
На самом деле, «амперы» — это мера электрического тока (который измеряется в ампер, ), а напряжение — это термин, который означает электрический потенциал (измеряется в вольт ), но если вы не усвоили детали, понятно, что вы могли спутать их друг с другом.
Чтобы понять разницу — и никогда больше не путать их — вам просто понадобится базовый учебник о том, что они означают и как они относятся к электрической цепи.
Что такое напряжение?
Напряжение — это еще один термин, обозначающий разность электрических потенциалов между двумя точками, и его можно просто определить как электрическую потенциальную энергию на единицу заряда.
Точно так же, как гравитационный потенциал — это потенциальная энергия, которую объект имеет в силу своего положения в гравитационном поле, электрический потенциал — это потенциальная энергия, которую заряженный объект имеет в силу своего положения в электрическом поле.Напряжение конкретно описывает это на единицу электрического заряда, поэтому его можно записать:
В = \ frac {E_ {el}} {q}
Где В — это напряжение, E el — это электрическая потенциальная энергия, а q — электрический заряд. Поскольку единицей измерения электрической потенциальной энергии является джоуль (Дж), а единицей измерения электрического заряда является кулон (Кл), единицей измерения напряжения является вольт (В), где 1 В = 1 Дж / Кл, или словами, один вольт равен одному джоулю на кулон.
Это говорит о том, что если вы позволите заряду в 1 кулон пройти через разность потенциалов (т.е. напряжение) в 1 В, он получит 1 Дж энергии, или, наоборот, для перемещения потребуется один джоуль энергии. кулон заряда через разность потенциалов 1 В. Напряжение также иногда называют электродвижущей силой (ЭДС).
Разность напряжений (или разность потенциалов) между двумя точками, например, с обеих сторон элемента в электрической цепи, можно измерить, подключив вольтметр параллельно с интересующим вас элементом.Как следует из названия, вольтметр измеряет напряжение между двумя точками цепи, но когда вы используете одну, он должен быть подключен параллельно , чтобы избежать помех при измерении напряжения или повреждения устройства.
Что сейчас?
Электрический ток, который иногда называют силой тока (поскольку он измеряется в амперах), представляет собой скорость прохождения электрического заряда через точку в цепи. Электрический заряд переносится электронами, отрицательно заряженными частицами, которые окружают ядро атома, поэтому величина тока действительно говорит вам о скорости потока электронов.Простое математическое определение электрического тока:
I = \ frac {q} {t}
Где I — ток (в амперах), q — электрический заряд (в кулонах). и t — истекшее время (в секундах). Как показывает это уравнение, определение ампера (А): 1 А = 1 Кл / с, или поток электрического заряда 1 кулон в секунду. Что касается электронов, это примерно 6,2 × 10 18 электронов (около шести миллиардов миллиардов), проходящих мимо контрольной точки в секунду при токе всего 1 А.
Ток в электрической цепи можно измерить, подключив амперметр последовательно — то есть на пути основного тока — с участком цепи, через который вы хотите измерить величину тока.
Поток воды: аналогия
Если вы все еще пытаетесь понять, какую роль играют разность напряжений и электрический ток в электрической цепи, широко применяемая аналогия между электричеством и водой должна помочь прояснить ситуацию.Для представления напряжения в электрической цепи можно использовать два разных сценария: либо водопровод, спускающийся с холма, либо резервуар для воды, заполненный выпускным патрубком внизу.
Что касается водопровода, у которого один конец находится на вершине холма, а другой конец — внизу, ваша интуиция должна подсказывать вам, что вода будет течь по ней быстрее, если холм будет выше, и медленнее, если холм будет ниже. В примере с резервуаром для воды, если было два резервуара для воды, заполненных до разных уровней, можно было бы ожидать, что более заполненный резервуар будет выпускать воду из выпускного отверстия с большей скоростью, чем резервуар, заполненный до более низкого уровня.
Будь то потенциал с высоты холма (из-за гравитационного потенциала) или потенциал, создаваемый давлением воды в резервуаре, оба этих примера передают ключевой факт о разнице напряжений. Чем больше потенциал, тем быстрее будет течь вода (то есть ток).
Сам поток воды аналогичен электрическому току. Если вы измерили поток воды, протекающей через одну точку трубы в секунду, это похоже на протекание тока в цепи, за исключением того, что вода заменяет электрический заряд в форме электронов.Таким образом, если все остальное равно, высокое напряжение приводит к сильному току, и наоборот. Заключительная часть рисунка — это сопротивление, которое аналогично трению между стенками трубы и водой, или физическому препятствию, помещенному в трубу, частично блокирующему поток воды.
Сходства и различия
\ def \ arraystretch {1.5} \ begin {array} {c: c} \ text {Сходства} & \ text {Различия} \\ \ hline \ hline \ text {Оба относятся к электрическому схемы} & \ text {В разных единицах измерения, напряжение измеряется в вольтах, где 1 В = 1 Дж / Кл} \\ & \ text {, а ток измеряется в амперах, где 1 А = 1 Кл / с} \\ \ hline \ text {Оба влияют на то, сколько мощности рассеивается на элементе схемы} & \ text {Ток равномерно распределяется по всем компонентам, когда они соединены последовательно} \\ & \ text {, в то время как падение напряжения на компонентах может отличаться} \\ \ hline \ text {Могут быть оба с чередующейся полярностью (например,грамм. чередующийся} & \ text {Падение напряжения одинаково на всех компонентах} \\ \ text {ток или переменное напряжение) или прямая полярность} & \ text {подключены параллельно, а ток отличается} \\ \ hline \ text {Они напрямую пропорциональны друг другу в соответствии с законом Ома} & \ text {Напряжение создает электрическое поле, а ток создает магнитное поле} \\ \ hline & \ text {Напряжение вызывает ток, а ток — эффект напряжения} \\ \ hline & \ text {Ток течет только тогда, когда цепь замкнута, но разница напряжений остается} \ end {array}
Как видно из таблицы, электрический ток и напряжение имеют больше различий, чем сходства, но есть и некоторые сходства.Самая большая разница между ними заключается в том, что они полностью описывают разные величины, поэтому, как только вы поймете основы того, что собой представляет, вы вряд ли перепутаете их друг с другом.
Связь между напряжением и током
Разность напряжений и электрический ток прямо пропорциональны друг другу в соответствии с законом Ома, одним из важнейших уравнений физики электрических цепей. Уравнение связывает напряжение (т.е.е., разность потенциалов, создаваемая батареей или другим источником питания) по отношению к току в цепи и сопротивление потоку тока, создаваемое компонентами цепи.
В = IR
Где В, — напряжение, I — электрический ток и R — сопротивление (измеряется в омах, Ом). По этой причине закон Ома иногда называют уравнением напряжения, тока и сопротивления. Если вам известны какие-либо две величины в этом уравнении, вы можете перестроить уравнение, чтобы найти другую величину, что делает его полезным при решении большинства проблем электроники, с которыми вы столкнетесь на уроках физики.
Стоит отметить, что закон Ома не всегда , и как таковой это не «истинный» закон физики, а полезное приближение для так называемых омических материалов . Линейная зависимость, которую он подразумевает между током и напряжением, неприменима для таких вещей, как лампа накаливания, где повышение температуры вызывает увеличение сопротивления и, таким образом, влияет на линейную зависимость. Однако в большинстве случаев (и, конечно же, в большинстве физических задач, связанных с напряжением и электрическим током) его можно использовать без проблем.
Закон Ома для мощности
Закон Ома в основном используется для связи напряжения с током и сопротивлением; тем не менее, есть расширение закона, которое позволяет использовать те же самые величины для расчета электрической мощности, рассеиваемой в цепи, где мощность P — это скорость передачи энергии в ваттах (где 1 Вт = 1 Дж / с). Самая простая форма этого уравнения:
P = IV
Таким образом, на словах мощность равна току, умноженному на напряжение.2R
Переставив эти уравнения, вы также можете выразить напряжение, сопротивление или ток через мощность и другую величину.
Законы Кирхгофа по напряжению и току
Законы Кирхгофа — два других наиболее важных закона для электрических цепей, и они особенно полезны при анализе цепи с несколькими компонентами.
Первый закон Кирхгофа иногда называют законом тока, потому что он гласит, что полный ток, текущий в переход, равен току, текущему из него — по сути, этот заряд сохраняется.
Второй закон Кирхгофа называется законом напряжения и гласит, что для любого замкнутого контура в цепи сумма всех напряжений должна равняться нулю. Согласно закону напряжения, вы относитесь к батарее как к положительному напряжению, а падение напряжения на любом компоненте — как к отрицательному.
В сочетании с законом Ома эти два закона можно использовать для решения практически любой проблемы, с которой вы, вероятно, столкнетесь, связанной с электрическими цепями.
Напряжение и ток: пример расчетов
Представьте, что у вас есть цепь, состоящая из батареи на 12 В и двух последовательно соединенных резисторов с сопротивлением 30 Ом и 15 Ом.Общее сопротивление цепи определяется суммой этих двух сопротивлений, поэтому 30 Ом + 15 Ом = 45 Ом. Обратите внимание, что когда резисторы расположены параллельно, взаимосвязь включает в себя обратные, но это не важно для понимания взаимосвязи между разностью напряжений и током, поэтому этого простого примера будет достаточно для настоящих целей.
Какой электрический ток течет по цепи? Прежде чем читать дальше, попробуйте сами применить закон Ома.
Следующая форма закона Ома:
I = \ frac {V} {R}
\ begin {align} I & = \ frac {12 \ text {V}} {45 \ text {Ω}} \\ & = 0.27 \ text {A} \ end {align}
Теперь, зная ток в цепи, каково падение напряжения на резисторе 15 Ом? Для ответа на этот вопрос можно использовать закон Ома в стандартной форме. Вставка значений I = 0,27 A и R = 15 Ом дает:
\ begin {align} V & = IR \\ & = 0,27 \ text {A} × 15 \ text {Ω } \\ & = 4.05 \ text {V} \ end {align}
Для целей использования законов Кирхгофа это будет отрицательное напряжение (т.е.е., падение напряжения). В качестве последнего упражнения, можете ли вы показать, что полное напряжение в замкнутом контуре будет равно нулю? Помните, что аккумулятор имеет положительное напряжение, а все падения напряжения отрицательные.