Мощность переменного тока. Мощность тока через катушку, резистор, конденсатор
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.
Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .
Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу
Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:
(1)
Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.
Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.
1. Мощность положительна: . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае
2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.
Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).
Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.
Мощность тока через резистор
Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:
Поэтому для мгновенной мощности получаем:
(2)
График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.
Рис. 1. Мощность переменного тока через резистор
Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:
На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?
Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?
Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:
среднее значение квадрата синуса (или косинуса) за период равно .
Этот факт иллюстрируется рисунком 2.
Рис. 2. Среднее значение квадрата синуса равно
Итак, для среднего значения мощности тока на резисторе имеем:
(3)
В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как
(4)
Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:
Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.
Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения
Мощность тока через конденсатор
Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :
Для мгновенной мощности получаем:
График зависимости мгновенной мощности от времени представлен на рис. 3.
Рис. 3. Мощность переменного тока через конденсатор
Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.
Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).
Рис. 4. Напряжение на конденсаторе и сила тока через него
Рассмотрим последовательно все четыре четверти периода.
1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.
Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.
2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.
Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).
3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.
Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.
4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.
Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.
Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.
Мощность тока через катушку
Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :
Для мгновенной мощности получаем:
Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).
Рис. 5. Напряжение на катушке и сила тока через неё
Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.
В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.
Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.
Мощность тока на произвольном участке
Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки…На этот участок подано переменное напряжение .
Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз . Мы записывали это так:
Тогда для мгновенной мощности имеем:
(5)
Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:
В результате получим:
(6)
Но среднее значение величины равно нулю! Поэтому средняя мощность оказывается равной:
(7)
Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:
Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем , и мы приходим к формуле (3). Для конденсатора и катушки , и средняя мощность равна нулю.
Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.
С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.
Онлайн калькулятор: Работа и мощность тока
Данный калькулятор можно использовать для проверки решений задач на тему «Постоянный ток. Работа и мощность тока», которая изучается в школьном курсе физики. Чтобы воспользоваться калькулятором, надо ввести известные в задаче значения, и оставить пустыми поля для неизвестных значений. Калькулятор, если ему хватает введенных данных, рассчитает и отобразит неизвестные значения.
Пример задачи: Подъемный кран потребляет ток силой 40А из сети с напряжением 380В. На подъем бетонной плиты кран затратил 3.5 минуты. Определите работу, которую совершил кран.
Для проверки решения этой задачи калькулятором надо ввести 40 в поле «Сила тока», 380 — в поле «Напряжение» и 3.5 — в поле «Время», поставив значение единиц времени в «минуты». В результате калькулятор рассчитает величину работы, а также мощности и сопротивления. Формулы расчета приведены под калькулятором.
Работа и мощность тока
ЕдиницымААмперкАМАЕдиницымВВольткВМВЕдиницымОмОмкОмМОмЕдиницыДжоульМДжкВт•часЕдиницыВатткВтМВтЕдиницысекундыминутычасыТочность вычисленияЗнаков после запятой: 2
Сила тока, Ампер
Напряжение, Вольт
Сопротивление, Ом
Работа, Джоуль
Мощность, Ватт
Время, секунд
Ссылка Сохранить Виджет
Работа и мощность тока
Под работой тока понимают работу, совершаемую электрическими силами по переносу заряженных частиц. Эта работа оценивается как произведение величины перенесенного заряда на величину разности потенциалов (напряжения) между начальной и конечной точками переноса.
С другой стороны, силу тока можно также выразить через величину перенесенного заряда
Откуда можно выразить работу тока, как скалярную величину, равную произведению силы тока, напряжения и времени, в течении которого шел ток
Кстати, исходя из этого соотношения, 1Дж = 1В·1А·1с
Применяя закон Ома для участка цепи
Можно получить производные формулы для работы:
Так как мощность это работа, совершенная за единицу времени, соответственно, мощность тока — это работа тока, совершенная за единицу времени.
Соответственно, мощность можно выразить как
Электрическая мощность, работа, энергия | Физика
Электрическая мощность
Подключим к цепи по очереди две лампочки накаливания, сначала одну, а затем другую и измерим силу тока в каждой из них. Она будет разной.
Сила тока в лампочке мощностью 25 ватт будет составлять 0.1 А. Лампочка мощностью 100 ватт потребляет ток в четыре раза больше — 0.4 А.
Лампочка в 100 ватт светится гораздо ярче, чем 25-ваттовая лампочка. Это значит, что ее мощность больше. Электрическая мощность измеряется в ваттах. Лампочка, мощность которой в 4 раза больше, потребляет в 4 раза больше тока. Это показывает, что мощность прямо пропорциональна силе тока.
Если мы подключим лампочку сразу к 2 источникам напряжения, то лампочка будет гореть ярче.
Это означает, что мощность пропорциональна напряжению.
Если мы соберем воедино эти факты, то получим формулу электрической мощности. Мощность W (Вт) равна напряжению V (В), умноженному на силу тока I (А). 1Вт = 1В * 1А. Из этого следует, что сила тока равна: I = W / V.
Электрическая работа
В механике мощность характеризует скорость выполнения работы. Чем быстрее идет работа, тем больше мощность.
(на второй картинке конвейер и девочка двигаются быстрее)
Работа равна произведению мощности и времени. Работа Р равна мощности W, умноженной на время t. Поэтому единица работы равна 1Вт * с.
Это равенство можно преобразовать, используя законы математики. Тогда мы получим, что мощность равна работе, деленной на время.
Эти взаимоотношения между мощностью и работой верны и для электричества. Лампочка мощностью 100 Вт за 1 секунду совершает электрическую работу 100 Вт * секунду, т.е. 100 Вт * с.
Единица электрической работы 1 Вт * с соответствует 1 джоулю из механики. Чтобы избежать огромных чисел, для обозначения электрической работы принято использовать 1 киловатт * час.
1 кВт * ч = 1000 Вт * ч = 60 000 Вт * мин = 3 600 000 Вт * с.
Электрическая энергия
Если какой-либо электрический прибор совершает работу, то он будет потреблять определенное количество энергии. Единица работы и энергии в данном случае будет одинакова. В электричестве для обозначения энергии используются единицы 1 Вт * с, 1 кВт * ч и 1 джоуль.
Согласно закону сохранения энергии, энергия не возникает из пустоты, а трансформируется из одной формы в другую. Теплоэлектростанция, работающая на угле, не создает электрическую энергию, а превращает химическую энергию угля сначала в двигательную энергию турбины, потом генератор превращает эту энергию в электрическую.
Таким образом, полученная электрическая энергия передается далее по проводам к потребителям. При этом проводники будут нагреваться, т.е. часть энергии превратится в тепло, которое будет нагревать лишь окружающий воздух, и потеряется. Это называется потерей энергии. К сожалению, все электрические процессы связаны с потерей части энергии.
При транспортировке электрической энергии хотелось бы избежать больших потерь. Чем больше сила тока, тем больше нагревается кабель. Меньшую силу тока можно использовать при условии, что увеличится напряжение. Поэтому, согласно закону W = U * I, используется большее напряжение. По этой причине электростанции передают энергию с напряжением 400 000 вольт и больше.
На определенных участках цепи напряжение составляет необходимые нам 220 вольт. Когда электрическая энергия достигает потребителя, то там она превращается в механическую энергию, тепловую энергию или свет. При этом тоже происходят потери.
Разные электрические приборы по-разному используют электрическую энергию.
Электронагреватель всю электрическую энергию превращает во внутреннюю энергию воды, т.е. тепловую энергию. Электрическая лампочка только 5% энергии использует для освещения, остальные 95% теряются в виде тепловой энергии.
Отношение затраченной и использованной энергии называется коэффициентом полезного действия. Коэффициент полезного действия лампочки накаливания очень низкий, а у электронагревателя очень высокий. Коэффициент полезного действия равен отношению использованной энергии к затраченной.p class=
Сколько ампер в розетке 220В ? – RozetkaOnline.COM
Чтобы узнать сколько ампер в обычной домашней розетке 220В, в первую очередь вспомним, что в Амперах измеряется сила тока:
Сила тока «I» – это физическая величина, которая равна отношению заряда «q», проходящего через проводник, ко времени (t), в течении которого он протекал.
Главное, что нам в этом определении важно – это то, что сила тока возникает лишь когда электричество проходит через проводник, а пока к розетке ничего не подключено и электрическая цепь разорвана, движения электронов нет, соответственно и ампер в такой розетке тоже нет.
В розетке, к которой не подключена нагрузка, ампер нет, сила тока равно нулю.
Теперь рассмотрим случай, когда в розетку подключен какой-то электроприбор и мы можем посчитать величину силы тока.
Если бы нашу электропроводку не защищала автоматика, установленная в электрощите, и максимальная подключаемая мощность оборудования (как и сила тока), ничем бы не контролировались, то количество ампер в бытовой розетке 220В могло быть каким угодно. Сила тока росла бы до тех пор, пока бы от высокой температуры не разрушились механизм розетки или провода.
При протекании высокого тока, проводники или места соединений, не рассчитанные на него, начинают нагреваться и разрушаются. В качестве примера можно взять спираль обычной лампы накаливания, которая, при прохождении электрического тока, раскаляется, но т.к. вольфрам, из которого она сделана – тугоплавкий металл, он не разрушается, чего нельзя ждать от контактов механизма розетки.
Чтобы рассчитать сколько ампер будет в розетке, при подключении того или иного прибора или оборудования, если под рукой нет амперметра, можно воспользоваться следующей формулой:
Формула расчета силы тока в розетке
I=P/(U*cos ф) , где I – Сила тока (ампер), P – мощность подключенного оборудования (Вт), U – напряжение в сети (Вольт), cos ф – коэффициент мощности (если этого показателя нет в характеристиках оборудования, принимать 0,95)
Пример расчета:
Давайте рассчитаем по этой формуле сколько ампер сила тока в обычной домашней розетке с напряжением (U) 220В при подключении к ней утюга мощностью 2000 Вт (2кВт), cos ф у утюга близок к 1.
I=2000/(220*1)=9.1 Ампер
Значит, при включении и нагреве утюга мощностью 2кВт, в сила тока в розетке будет около 9,1 Ампер.
При одновременном включении нескольких устройств в одну розетку, ток в ней будет равен сумме токов этого оборудования.
Какая максимальная величина силы тока для розеток
Чаще всего, современные домашние розетки 220В рассчитаны на максимальный ток 10 или 16 Ампер. Некоторые производители заявляют, что их розетки выдерживают и 25 Ампер, но таких моделей крайне мало.
Старые, советские розетки, которые еще встречаются в наших квартирах, вообще рассчитаны всего на 6 Ампер.
Максимум, что вы сможете встретить в стандартной типовой квартире, это силовую розетку для электроплиты или варочной панели, которая способна выдерживать силу тока до 32 Ампер.
Это гарантированные производителем показатели силы тока, который выдержит розетка и не разрушится. Эти характеристики обязательно указаны или на корпусе розетки или на её механизме.
При выборе электроустановочных изделий имейте ввиду, что, например, розетка на 16 Ампер выдержит около 3,5 киловатт мощности, а на 10 Ампер уже всего 2,2 Киловатт.
Ниже представлена таблица, максимальной мощности подключаемого оборудования для розеток, в зависимости от количества ампер, на которые они рассчитаны.
ТАБЛИЦА МАКСИМАЛЬНОЙ МОЩНОСТИ ОБОРУДОВАНИЯ ДЛЯ РОЗЕТОК, РАССЧИТАННЫХ НА ТОК 6, 10, 16, 32 Ампер
Чаще всего, всё бытовое электрооборудование, которое включается в стандартные розетки 220В, не превышает по мощности 3,5кВт, более мощные приборы имеют уже иные разъемы для подключения или поставляются без электрической вилки, в расчете на подключение к клеммам или к электрическим вилкам для силовых розеток.
Я советую всегда выбирать розетки рассчитанные на силу тока 16 Ампер или больше – они надежнее. Ведь чаще всего электропроводку в квартирах прокладывают медным кабелем с сечением жил 2,5 мм.кв. и ставят автомат на розетки на 16 Ампер. Поэтому, если вы выберете розетку, рассчитанную на 10 Ампер и подключите к ней большую нагрузку, то защитная автоматика не сработает, и розетка начнет греться, плавится, это может стать причиной пожара.
Если же у вас остались вопросы о характеристиках розеток или их выборе, обязательно пишите, постараюсь помочь. Кроме того, приветствуется любая критика, дополнения, мнения – пишите.
Перевести ватты (Вт) в амперы (А): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести ватты (Вт) в амперы (А), введите мощность P в ваттах (Вт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).
Калькулятор Вт в А (постоянный ток)
Формула для перевода Вт в А
Сила тока I в амперах (А) сети с постоянным током равняется мощности P в ваттах (Вт), деленной на напряжение U в вольтах (В).
Калькулятор Вт в А (1 фаза, переменный ток)
Формула для перевода Вт в А
Сила тока I в амперах (А) однофазной сети с переменным током равняется мощности P в ваттах (Вт), деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).
Калькулятор Вт в А (3 фазы, переменный ток, линейное напряжение)
Формула для перевода Вт в А
Сила тока I в амперах (А) трехфазной сети с линейным напряжением равна мощности P в ваттах (Вт), деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.
Калькулятор Вт в А (3 фазы, переменный ток, фазное напряжение)
Формула для перевода Вт в А
Сила тока I в амперах (А) трехфазной сети с фазным напряжением равна мощности P в ваттах (Вт), деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).
Онлайн калькулятор перевода Ватт в Амперы для определения нагрузки
Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.
Онлайн калькулятор по расчету ватт в амперы
Для получения результата обязательно указывать напряжение и потребляемую мощность.
В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.
Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.
- Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
- Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
- В вольтах измеряется напряжение протекания электрического тока.
Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере
Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре
шением. Все просто и доступно!
Таблица значенийТаблица расчета Ампер и нагрузки в ВаттВидео по теме: определения мощности и силы тока
Видео:
Видео:
Работа и мощность электрического тока
Задачи на Мощность электрического тока с решениями
Формулы, используемые на уроках «Задачи на Мощность электрического тока»
1 мин = 60 с; 1 ч = 60 мин; 1 ч = 3600 с.
Задача № 1.
Определить мощность тока в электрической лампе, если при напряжении 110 В сила тока в ней 200 мА.
Задача № 2.
Определить мощность тока в электрической лампе, если сопротивление нити акала лампы 400 Ом, а напряжение на нити 100 В.
Задача № 3.
Определить силу тока в лампе электрического фонарика, если напряжение на ней 6 В, а мощность 1,5 Вт.
Задача № 4.
В каком из двух резисторов мощность тока больше при последовательном (см. рис. а) и параллельном (см. рис. б) соединении? Во сколько раз больше, если сопротивления резисторов R1 = 10 Ом и R2 = 100 Ом?
Задача № 5.
Ученики правильно рассчитали, что для освещения елки нужно взять 12 имеющихся у них электрических лампочек. Соединив их последовательно, можно будет включить их в городскую сеть. Почему меньшее число лампочек включать нельзя? Как изменится расход электроэнергии, если число лампочек увеличить до 14?
Задача № 6.
В горном ауле установлен ветряной двигатель, приводящий в действие электрогенератор мощностью 8 кВт. Сколько лампочек мощностью 40 Вт можно питать от этого источника тока, если 5% мощности расходуется в подводящих проводах?
Задача № 7.
Сила тока в паяльнике 4,6 А при напряжении 220 В. Определите мощность тока в паяльнике.
Задача № 8.
Одинакова ли мощность тока в проводниках ?
Задача № 9.
На баллоне первой лампы написано 120 В; 100 Вт, а на баллоне второй — 220 В; 100 Вт. Лампы включены в сеть с напряжением, на которое они рассчитаны. У какой лампы сила тока больше; во сколько раз?
Задача № 10. (повышенной сложности)
В сеть напряжением 120 В параллельно включены две лампы: 1 — мощностью 300 Вт, рассчитанная на напряжение 120 В, и 2, последовательно соединенная с резистором,— на 12 В. Определите показания амперметров А1 и А и сопротивление резистора, если амперметр А2 показывает силу тока 2 А.
Задача № 11.
ОГЭ
При силе тока I1 = 3 А во внешней цепи выделяется мощность Р1 = 18 Вт, а при силе тока I2 = 1 А — мощность Р2 = 10 Вт. Найти ЭДС и внутреннее сопротивление источника тока.
Задача № 12.
ЕГЭ
Имеются две электрические лампочки мощностью Р1 = 40 Вт и Р2 = 60 Вт, рассчитанные на напряжение сети U = 220 В. Какую мощность будет потреблять каждая из лампочек, если их подключить к сети последовательно?
Это конспект по теме «ЗАДАЧИ на Мощность электрического тока». Выберите дальнейшие действия:
- Перейти к теме: ЗАДАЧИ на Закон Джоуля-Ленца
- Посмотреть конспект по теме Работа и Мощность электрического тока
- Вернуться к списку конспектов по Физике.
- Проверить свои знания по Физике.
Электротехнические работы для промышленных объектов
Электромонтаж на объектах промышленного значения и замена износившейся проводки в рамках одного цеха или всего предприятия, плановая замена включателей и розеток, установка щитков должны учитывать всю специфику конкретного производства и нормы электротехнических работ.
Стоит отметить, что замена электроустановочных изделий должна отталкиваться от того, рассчитаны ли они на электрические перегрузки напряжения, ведь если нагрузка превышает показатели, контакты будут постоянно перегреваться, а со временем и выгорят вовсе. Это может стать причиной пожара на производстве или в цеху.
Выполнение электротехнических работ в производственных помещениях с повышенной концентрацией влажности, летучих веществ, едких газов, должно производиться монтером с применением герметичных розеток и включателей закрытого типа.
В том случае, если используются электроустановочные изделия открытого типа, то их монтируют на специальные подразетники шурупами с потайной головкой.
Все электротехнические и пусконаладочные работы электротехнического оборудования на производстве, строительных объектах и в энергетике возможны только с помощью специалистов профессиональных лицензированных компаний.
Для замены коммуникаций, устаревших единиц оборудования профессиональные сотрудники электромонтажных организаций в своей работе используют кабельно-проводниковое оснащение, автоматизационные средства и наилучшие расходные материалы.
Качество электротехнических работ должно:
- Быть безошибочным. Это возможно в том случае, если каждое звено системы работоспособно. В такой ситуации установки начинают работать с первого запуска, и через промежутки времени недоработки не выявляются.
- Учитывать безопасность электротехнических работ.
- Соответствовать требованиям комфортной эксплуатации в промышленном секторе.
- Также нужны подготовка проектной и финансовой документации и отчетности.
- Установка низковольтного оснащения.
- Электротехнические пусконаладочные работы для подключенного оборудования.
- Замена проводки в слаботочных и силовых сетях, а также в магистральных линиях.
- Электромонтаж освещения.
- Монтаж и установка заземлений любой сложности.
После окончания всех мероприятий проверяется работа, электротехническая лаборатория проводит испытания всех звеньев системы и выдает документ с заключением. В процессе монтажа специалисты обязательно предусматривают различные возможности для расширения сети в случае необходимости.
Наш современный мир сложно вообразить без электроэнергии. Мало кто из нас задумывается над техническими вопросами и живет, потребляя электроэнергию во благо. И потому, когда проводка выходит из строя, без капитальных электромонтажных работ не обойтись.
Грамотно проведенный ремонт позволит избежать удлинителей, которые могут стать причиной замыкания, т.к. они нагружают сеть.
Стоит отметить, что основные правила электротехнических работ – это не только замена автоматики и проводов, но еще и правильное планирование электрооборудования, что будет устанавливаться позже.
Особое внимание следует уделять электромонтажу на кухне и в ванной. Такие работы планируются заранее, и в конце не лишним будет замена щитка
Больше об особенностях электротехнической работеможно узнать на ежегодной выставке «Электро».
Электромонтажное производствоПроизводство электроустановочных изделийПроизводство электротехнического оборудования в России
Электроэнергия и источник питания
Теперь давайте подробнее разберем нашу схему. Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:
Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу. В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы “оборвали” нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь ” в обрыве”. Ток не бежит, лампочка не горит.
Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:
Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.
Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!
Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что “побрейтесь” фанаты вечных двигателей).
В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.
Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза “источник питания” уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.
А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор. Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье, который может вырабатывать электрический ток под действием разности температур. Способов много, а эффект один. Сделать так, чтобы появилась ЭДС.
Работа электрического тока
Рисунок 1. Работа и мощность электрического тока |
К цепи, представленной на рисунке 1, приложено постоянное напряжение U.
U = φА – φБ
За время t по цепи протекло количество электричества Q. Силы электрического поля, действующего вдоль проводника, перенесли за это время заряд Q из точки А в точку Б. Работа электрических сил поля или, что то же, работа электрического тока может быть подсчитана по формуле:
A = Q × (φА – φБ) = Q × U,
Так как Q = I × t, то окончательно:
A = U × I × t,
где A – работа в джоулях; I – ток в амперах; t – время в секундах; U – напряжение в вольтах.
По закону Ома U = I × r. Поэтому формулу работы можно написать и так:
A = I 2 × r × t.
Оцените статью:Текущее электричество — Science World
Цели
Опишите компоненты, необходимые для замыкания электрической цепи.
Продемонстрируйте различные способы завершения цепи (параллельной или последовательной).
Определите, как электричество используется в бытовых приборах.
Опишите связь между электроном и текущим электричеством.
Материалы
Фон
Электроэнергия используется для работы вашего мобильного телефона, силовых поездов и кораблей, для работы холодильника и двигателей в таких машинах, как кухонные комбайны. Электрическая энергия должна быть заменена на другие формы энергии, такие как тепловая, световая или механическая, чтобы быть полезной.
Все, что мы видим, состоит из крошечных частиц, называемых атомами. Атомы состоят из еще более мелких частей, называемых протонами, электронами и нейтронами. Атом обычно имеет одинаковое количество протонов (которые имеют положительный заряд) и электронов (которые имеют отрицательный заряд). Иногда электроны можно отодвинуть от своих атомов.
Электрический ток — это движение электронов по проводу. Электрический ток измеряется в амперах и (амперах) и относится к количеству зарядов, которые перемещаются по проводу за секунду.
Для протекания тока цепь должна быть замкнута; Другими словами, должен быть непрерывный путь от источника питания через цепь, а затем обратно к источнику питания.
Параллельная цепь (вверху)
Цепь серии (внизу)
Напряжение иногда называют электрическим потенциалом и измеряется в вольт . Напряжение между двумя точками в цепи — это полная энергия, необходимая для перемещения небольшого электрического заряда из одной точки в другую, деленная на размер заряда.
Сопротивление измеряется в Ом и относится к силам, которые препятствуют протеканию электронного тока в проводе. Мы можем использовать сопротивление в своих интересах, преобразовывая электрическую энергию, потерянную в резисторе, в тепловую энергию (например, в электрической плите), световую энергию (лампочка), звуковую энергию (радио), механическую энергию (электрический вентилятор) или магнитную энергию. энергия (электромагнит). Если мы хотим, чтобы ток протекал напрямую из одной точки в другую, мы должны использовать провод с минимально возможным сопротивлением.
Аккуратная аналогия, помогающая понять эти тер мс: система водопроводных труб.
- Напряжение эквивалентно давлению воды, которая выталкивает воду в трубу
- Ток эквивалентен расходу воды
- Сопротивление похоже на ширину трубы — чем тоньше труба, тем выше сопротивление и тем труднее протекает вода.
В этой серии заданий ученики будут экспериментировать с проводами, батареями и переключателями, чтобы создать свои собственные электрические цепи, одновременно изучая напряжение, ток и сопротивление.
Забавный факт!
Вы можете заметить, что символы для некоторых единиц СИ (Международной системы единиц) в этом плане урока написаны с заглавной буквы, например, вольт (В) и ампер (А), в отличие от тех, к которым вы привыкли. используя (м, кг). При названии единицы в честь человека принято использовать заглавную букву. В этих случаях подразделения были названы в честь Алессандро Вольта и Андре-Мари Ампера. Единица измерения сопротивления также была названа в честь человека (Георг Симон Ома), но использует символ Ω, который представляет греческую букву омега.Эти правила важно соблюдать, поскольку строчные и прописные буквы могут означать разные единицы измерения, такие как тонна (т) и тесла (Т). Единственным исключением является то, что для литров допустимо использовать L, поскольку букву «l» часто путают с цифрой «1»!
Словарь
амперметр : прибор для измерения электрического тока в цепи; единица измерения — амперы или амперы (А).
схема : Путь для прохождения электрического тока.
проводник : Вещество, состоящее из атомов, которые свободно удерживают электроны, что позволяет им легче перемещаться через него.
электрический ток : непрерывный поток электрического заряда, перемещающийся из одного места в другое по пути; требуется для работы всех электрических устройств; измеряется в амперах или амперах (A).
электрохимическая реакция : реакция, которая чаще всего включает перенос электронов между двумя веществами, вызванный или сопровождаемый электрическим током.
электрод : проводник, по которому ток входит или выходит из объекта или вещества.
электрон : субатомная частица с отрицательным электрическим зарядом.
изолятор : Вещество, состоящее из атомов, которые очень прочно удерживают электроны, что не позволяет электронам легко проходить сквозь них.
параллельная цепь : Тип схемы, которая позволяет току течь по параллельным путям. Электрический ток распределяется между разными путями.Если лампочки подключены в параллельную цепь, и одна из лампочек удалена, ток все равно будет течь, чтобы зажечь другие лампочки в цепи.
полупроводник : Вещество, состоящее из атомов, которые удерживают электроны с силой между проводником и изолятором.
Последовательная цепь : Схема, в которой все компоненты соединены по единому пути, так что один и тот же ток течет через все компоненты. Если вынуть одну из лампочек, цепь разорвется, и ни одна из других лампочек не будет работать.
напряжение : Разность потенциалов между двумя точками в цепи, например положительным и отрицательным полюсами батареи. Его часто называют «толчком» или «силой» электричества. Возможно наличие напряжения без тока (например, если цепь неполная и электроны не могут течь), но невозможно иметь ток без напряжения. Он измеряется в вольтах (В).
вольтметр : прибор, используемый для измерения разности электрических потенциалов между двумя точками в цепи.
Прочие ресурсы
г. до н.э. Hydro | Power Smart для школ
г. до н.э. Hydro | Изучение простых схем
г. до н.э. Hydro | Изучение последовательных и параллельных цепей
г. до н.э. Hydro | Электробезопасность
Как работает материал | Как работают светодиоды
Для покупки елочных мини-лампочек: Home Depot, Canadian Tire
Для приобретения небольших учебных лампочек (номиналом не более 2 вольт каждая): Boreal Science
С тех пор, как Current Power & Electric (CP&E) открыла свой бизнес в Сиэтле в 1995 году, выполняя как коммерческие, так и бытовые работы, обязательства CP&E не изменились.Наша цель — предоставить наиболее экономичные решения для заключения контрактов на электроэнергию для проекта, сохраняя при этом безопасные и соответствующие нормам методы электромонтажа. Мы привлекаем наших клиентов к процессу проектирования электрооборудования. Создавая проект вместе, а затем устанавливая его, вы экономите! В вашей ситуации может быть несколько способов. Компания CP&E найдет для вас лучший вариант по оптимальной цене и без проблем выполнит подрядные работы по электромонтажу. Позвольте CP&E устранить ваши проблемы с электричеством, которые усложняют вашу повседневную жизнь.Профилактическое обслуживание позволит выявить проблемы до того, как они будут стоить вам и вашему свободному времени. Вот несколько примеров профилактического обслуживания электрических устройств: По оценкам Комиссии по безопасности потребительских товаров, ежегодно тысячи пожаров в жилых домах начинаются с использованием удлинителей.Не входите в эту группу! Создание вашего нового коммерческого или жилого проекта стимулирует работу для CP&E, и ее завершение приносит нам большое удовлетворение. Лучшие решения — это отчасти интеллект, а отчасти интуитивное вдохновение. Current Power & Electric просто хочет быть вашим подрядчиком по оказанию электрических услуг — сейчас и в будущем. Пожалуйста, свяжитесь с нами сегодня в Current Power & Electric и давайте обсудим ваши потребности в электрических контрактах. Current Power & Electric с гордостью предоставляет услуги электрика в следующих городах: Сиэтл, Баллард, Капитолийский холм, Маунт-Бейкер, Мадрона, Мэдисон-Парк, Лорелхерст, Магнолия, Королева Анна, Бельвью, Клайд-Хилл, Медина, Хантс-Пойнт, Ярроу-Пойнт, Киркленд, Редмонд, Вудинвилль, Ботелл, Кенмор, Брайер, Маунтлейк-Террас, Лейк-Форест-Парк, остров Мерсер, Иссакуа, Береговая линия, Ричмонд-Бич, Вудвей, Эдмондс, Линвуд, Буриен, Туквила, Колумбия-Сити, Джорджтаун, Ньюкасл, Рентон, СиТак. |
Война токов: мощность переменного тока и постоянного тока
Это #GridWeek на Energy.gov. Мы подчеркиваем наши усилия по поддержанию надежной, отказоустойчивой и безопасной электросети по всей стране и то, что это значит для вас. В четверг, 20 ноября, в 14:00 по восточноевропейскому времени мы проведем чат в Твиттере на тему «Как работает сеть». Присылайте нам свои вопросы в Twitter, Facebook и Google+, используя #GridWeek.
Начиная с конца 1880-х годов Томас Эдисон и Никола Тесла были втянуты в битву, известную теперь как Война течений.
Эдисон разработал постоянный ток — ток, который непрерывно течет в одном направлении, как в батарее или топливном элементе. В первые годы развития электричества постоянный ток (сокращенно DC) был стандартом в США.
Но была одна проблема. Постоянный ток нелегко преобразовать в более высокие или более низкие напряжения.
Тесла считал, что переменный ток (или переменный ток) был решением этой проблемы. Переменный ток меняет направление определенное количество раз в секунду — 60 в U.S. — и может быть сравнительно легко преобразован в различные напряжения с помощью трансформатора.
Эдисон, не желая терять гонорары, которые он получал от своих патентов на постоянный ток, начал кампанию по дискредитации переменного тока. Он распространял дезинформацию, говоря, что переменный ток более опасен, и даже зашел так далеко, что публично казнил бездомных животных электрическим током, используя переменный ток, чтобы доказать свою точку зрения.
Чикагская всемирная выставка, также известная как Всемирная колумбийская выставка, проходила в 1893 году, в разгар нынешней войны.
General Electric предложила электрифицировать ярмарку, используя постоянный ток Эдисона, за 554 000 долларов, но проиграла Джорджу Вестингаузу, который сказал, что может обеспечить электроэнергию ярмарку всего за 399 000 долларов, используя переменный ток Tesla.
В том же году Niagara Falls Power Company решила заключить с Westinghouse, которая получила лицензию на патент на многофазный асинхронный двигатель Tesla, контракт на производство электроэнергии из Ниагарского водопада. Хотя некоторые сомневались, что этот водопад может привести в действие весь Буффало, штат Нью-Йорк, Тесла был убежден, что он может вызвать энергетику не только Буффало, но и всей восточной части Соединенных Штатов.
16 ноября 1896 года Буффало был освещен переменным током от Ниагарского водопада. К этому времени General Electric тоже решила запрыгнуть на поезд переменного тока.
Похоже, что переменный ток почти уничтожил постоянный ток, но в последние годы постоянный ток пережил своего рода возрождение.
Сегодня наша электроэнергия по-прежнему питается преимущественно переменным током, но компьютеры, светодиоды, солнечные элементы и электромобили работают на постоянном токе.Теперь доступны методы преобразования постоянного тока в более высокие и более низкие напряжения. Поскольку постоянный ток более стабилен, компании находят способы использования постоянного тока высокого напряжения (HVDC) для транспортировки электроэнергии на большие расстояния с меньшими потерями электроэнергии.
Похоже, Война Токов еще не закончилась. Но вместо того, чтобы продолжать горячую битву переменного и постоянного тока, похоже, что два тока в конечном итоге будут работать параллельно друг другу в своего рода гибридном перемирии.
И ничего из этого было бы невозможно без гения Теслы и Эдисона.
Примечание. Этот пост был первоначально опубликован в рамках серии статей «Эдисон против Теслы» в ноябре 2013 года.
Безопасность | Стеклянная дверь
Мы получаем подозрительную активность от вас или кого-то, кто пользуется вашей интернет-сетью. Подождите, пока мы подтвердим, что вы настоящий человек. Ваш контент появится в ближайшее время. Если вы продолжаете видеть это сообщение, напишите нам чтобы сообщить нам, что у вас возникли проблемы.
Nous aider à garder Glassdoor sécurisée
Nous avons reçu des activités suspectes venant de quelqu’un utilisant votre réseau internet.Подвеска Veuillez Patient que nous vérifions que vous êtes une vraie personne. Вотре содержание apparaîtra bientôt. Si vous continuez à voir ce message, veuillez envoyer un электронная почта à pour nous informer du désagrément.
Unterstützen Sie uns beim Schutz von Glassdoor
Wir haben einige verdächtige Aktivitäten von Ihnen oder von jemandem, der in ihrem Интернет-Netzwerk angemeldet ist, festgestellt. Bitte warten Sie, während wir überprüfen, ob Sie ein Mensch und kein Bot sind.Ihr Inhalt wird в Kürze angezeigt. Wenn Sie weiterhin diese Meldung erhalten, informieren Sie uns darüber bitte по электронной почте: .
We hebben verdachte activiteiten waargenomen op Glassdoor van iemand of iemand die uw internet netwerk deelt. Een momentje geduld totdat, мы выяснили, что u daadwerkelijk een persoon bent. Uw bijdrage zal spoedig te zien zijn. Als u deze melding blijft zien, электронная почта: om ons te laten weten dat uw проблема zich nog steeds voordoet.
Hemos estado detectando actividad sospechosa tuya o de alguien con quien compare tu red de Internet. Эспера mientras verificamos que eres una persona real. Tu contenido se mostrará en breve. Si Continúas recibiendo este mensaje, envía un correo electrónico a para informarnos de que tienes problemas.
Hemos estado percibiendo actividad sospechosa de ti o de alguien con quien compare tu red de Internet. Эспера mientras verificamos que eres una persona real.Tu contenido se mostrará en breve. Si Continúas recibiendo este mensaje, envía un correo electrónico a para hacernos saber que estás teniendo problemas.
Temos Recebido algumas atividades suspeitas de voiceê ou de alguém que esteja usando a mesma rede. Aguarde enquanto confirmamos que Você é Uma Pessoa de Verdade. Сеу контексто апаресера эм бреве. Caso продолжить Recebendo esta mensagem, envie um email para пункт нет informar sobre o проблема.
Abbiamo notato alcune attività sospette da parte tua o di una persona che condivide la tua rete Internet.Attendi mentre verifichiamo Che sei una persona reale. Il tuo contenuto verrà visualizzato a breve. Secontini visualizzare questo messaggio, invia un’e-mail all’indirizzo per informarci del проблема.
Пожалуйста, включите куки и перезагрузите страницу.
Это автоматический процесс. Ваш браузер в ближайшее время перенаправит вас на запрошенный контент.
Подождите до 5 секунд…
Перенаправление…
Заводское обозначение: CF-102 / 68fcb66c4af67597.
Высокопроизводительные силовые ткани постоянного тока на основе эффекта пробоя воздуха
Энергосберегающие ткани на основе трибоэлектрических наногенераторов (TENG) привлекли пристальное внимание в связи с их широким потенциалом применения в носимой электронике.Однако узкие места, связанные с ограниченным выходом электроэнергии и переменным током, сильно препятствовали развитию текстильных TENG. Здесь, просто и легко покрывая два электрода на верхней стороне (электрод пробоя) и нижней стороне (электрод трения) полиэфирно-хлопчатобумажной ткани, получается легкий, очень гибкий и пригодный для носки TENG постоянного тока на тканевой основе (FDC-TENG). ) с высокой выходной мощностью. Различные структурные параметры и факторы окружающей среды тщательно и систематически исследуются для всестороннего понимания FDC-TENG.Поверхностные заряды, вызванные трибоэлектрификацией, могут однонаправленно и эффективно собираться через проводящий плазменный канал, вызванный пробоем воздуха, что наделяет FDC-TENG размером с палец способностью зажигать 99 лампочек и 1053 светодиодов, а также легко и напрямую управлять часами и калькуляторами. без выпрямления и зарядки конденсаторов. Эта работа может обеспечить смену парадигмы для высокопроизводительных структур питания постоянного тока и расширить их область применения в носимой электронике.
У вас есть доступ к этой статье
Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте снова? Системы постоянного токамогут экономить энергию, поэтому застройщики получают новый стимул для их использования
Производство, передача и распределение электроэнергии в США.S. преимущественно основан на переменном токе (AC), но все большее количество устройств в зданиях США, включая компьютеры, мобильную электронику и светодиодные фонари, используют питание постоянного тока (DC). Это означает, что мощность переменного тока должна быть преобразована в мощность постоянного тока, прежде чем она может использоваться этими устройствами, совместимыми с постоянным током. Неэффективность процесса преобразования в настоящее время (каламбур) приводит к 5-20% потерь энергии.
Параллельное повышение мощности постоянного тока источников в зданиях (например, солнечные батареи и связанные с ними аккумуляторы) дает возможность избежать этих потерь при преобразовании.Но сегодня эта мощность постоянного тока почти всегда преобразуется в переменный ток перед прохождением через электрическую систему здания, а затем снова преобразуется в постоянный ток в «кирпичике» кабеля ноутбука или его эквиваленте в других устройствах постоянного тока.
Решение кажется очевидным: избегать преобразования мощности. Но это потребует от проектировщиков и разработчиков зданий интеграции систем питания постоянного тока в здания.
В отчете Going Beyond Zero Инициатива Альянса по повышению эффективности систем призвала к обеспечению соответствия системным требованиям, таким как интеграция систем питания постоянного тока, для достижения целевых показателей энергопотребления или сертификации зданий.Члены Инициативы тесно сотрудничают с Советом по экологичному строительству США (USGBC), и на этой неделе организация добавила новый пилотный кредит в свою программу сертификации «Лидерство в энергетике и экологическом дизайне» ® (LEED), специально стимулируя использование постоянного тока. интеграция.
Рост устройств постоянного тока предлагает множество преимуществ — и наши электрические системы должны адаптироваться
Устройства с питанием от постоянного тока повсюду вокруг нас. Помимо светодиодного освещения, компьютеров и мобильной электроники, они включают зарядные устройства для электромобилей и, во все большей степени, оборудование для отопления, вентиляции и кондиционирования воздуха (HVAC).И количество устройств с питанием от постоянного тока будет расти еще больше: потребление постоянного тока в настоящее время составляет около 32 процентов от общих энергетических нагрузок, а в домах, где используются электромобили и оборудование HVAC с двигателями постоянного тока, может вырасти до 74 процентов. Интеграция систем распределения питания постоянного тока не только поможет избежать потерь при преобразовании из-за этого увеличивающегося конечного использования постоянного тока, но многие устройства с питанием от постоянного тока сами по себе более эффективны. Например, светодиодные лампы с питанием от постоянного тока потребляют примерно на 75 процентов меньше энергии, чем лампы накаливания с питанием от переменного тока.Следовательно, интеграция распределения питания постоянного тока создает рыночный спрос на технологии питания постоянного тока, способные повысить эффективность в зданиях.
Кроме того, возможности для электрических систем постоянного и гибридного переменного / постоянного тока в зданиях будут увеличиваться, поскольку все больше домовладельцев и организаций предпочитают снабжать здания солнечными фотоэлектрическими (PV) системами. Поскольку потенциал энергосбережения энергии постоянного тока является наибольшим в сочетании с возобновляемыми источниками энергии, пилотный кредит постоянного тока дополняет кредиты LEED по возобновляемым источникам энергии и гармонизации энергосистемы.
И, оптимизируя и максимизируя производительность локальных солнечных фотоэлектрических систем и аккумуляторов энергии, питание постоянного тока повышает надежность солнечной энергии во время стихийных бедствий или других перебоев в электроснабжении. Таким образом, добавление систем питания постоянного тока может повысить устойчивость и надежность энергоснабжения домов и зданий, что становится все более важным фактором, поскольку изменение климата увеличивает частоту и интенсивность суровых погодных условий, вызывающих перебои в подаче электроэнергии.
Как мы сюда попали: AC vs.Электропитание постоянного тока
Краткое освежение данных о переменном и постоянном токе: с конца девятнадцатого века переменный ток безотказно поставляет большую часть энергии в наши здания. Направление потока различает мощность переменного и постоянного тока: постоянный ток постоянен и движется в одном направлении, в то время как переменный ток колеблется / меняет направление. Первоначально переменный ток был выбран в качестве предпочтительного тока для распределения энергии в США в первую очередь из-за способности повышать или понижать напряжение с помощью трансформаторов, что позволяет эффективно передавать большую мощность на большие расстояния, а затем «понижать» до предлагаем низкое напряжение, необходимое для бытовой техники в зданиях.
Поскольку национальная электросеть приняла передачу и распределение переменного тока, устройства в зданиях были переведены на работу от сети переменного тока. Однако сейчас питание постоянного тока становится все более актуальным для удовлетворения наших потребностей в распределении энергии, поскольку мы все больше полагаемся на устройства, содержащие полупроводники, которые должны получать питание от постоянного тока.
Пилотный кредит LEED поощряет системный подход к экономии
Новый пилотный кредит LEED разработан, чтобы разрешить дилемму курицы и яйца, связанную с питанием постоянного тока в зданиях: производители не склонны производить системы с питанием постоянного тока, потому что они не указано в проектных планах; с другой стороны, команды разработчиков не указывают их, потому что производители не производят их.Этот новый стимул для проектировщиков зданий интегрировать питание постоянного тока в здания поможет стимулировать интерес к спецификациям систем постоянного тока и, таким образом, к их производству производителями.
Пилотный зачет основан на зачете LEED «Оптимизация энергоэффективности». У проектных групп зданий есть два варианта получения баллов LEED за интеграцию систем или подсистем, которые работают непосредственно от источника постоянного тока, в свои конструкции. Вариант 1 — это предписывающий подход, который требует, чтобы 95 процентов нагрузки по крайней мере одной основной энергосистемы работали напрямую от источника постоянного тока.Вариант 2 — это подход, основанный на производительности, который предлагает альтернативный путь моделирования энергопотребления всего здания, вознаграждая больше баллов за большую экономию энергии в конструкциях, которые интегрируют питание постоянного тока. Проекты, которые реализуют вариант 2, могут принести большую экономию, поскольку он поощряет системный подход и включает целостный взгляд на использование энергии. Вознаграждая кредиты за большую экономию энергии, дизайнеры поощряются к творчеству и гибкости в определении того, как интегрировать системы питания постоянного тока в здание таким образом, чтобы учитывать взаимодействие между системами для оптимизации энергосбережения всего здания.
Пилотные кредиты LEED предназначены для развития на основе отзывов о проектах. Тем, у кого есть проекты, которые могут проверить кредит, рекомендуется обратиться к представителю USGBC по адресу [email protected]. Чтобы узнать больше о пилотном кредите и зарегистрировать кредит для своего проекта, посетите Пилотную кредитную библиотеку USGBC.
Текущее состояние сети — Юго-западный пул электроэнергии
Текущее состояние сети
(Последнее обновление: авг.3, 2021, 11:15 по центральному времени)
В настоящее время СЭС работает в штатном режиме.
Уведомление о сети
SPP будет использовать список рассылки электронных сообщений Grid Notice, чтобы сообщать об изменении состояния сети в нашей зоне обслуживания, включая предупреждения о погоде и ресурсах, консервативные операции и предупреждения о чрезвычайных ситуациях в области энергетики.
Чтобы подписаться на получение этих обновлений:
- После входа на SPP.org нажмите кнопку «Привет, [ваше имя]» в правом верхнем углу экрана, чтобы обновить настройки своей учетной записи.(Возможно, вам придется создать учетную запись, если у вас ее еще нет.)
- В списке доступных взрывателей установите флажок рядом с тем, который называется «Grid Notice».
- Нажмите «Отправить» внизу формы, чтобы сохранить изменения.
Вы можете отказаться от подписки на этот и другие взломщики в любое время на той же странице управления учетной записью.
Описание общих событий надежности приведено ниже в порядке возрастания серьезности:
Нормальные операции : SPP имеет достаточно генерации, чтобы удовлетворить спрос и доступные резервы, и не предвидит никаких экстремальных или аномальных угроз надежности.
Weather Alert : объявляется, когда на территории службы координации надежности SPP ожидается экстремальная погода.
Resource Alert : объявляется, когда в зоне действия балансирующего органа SPP ожидаются суровые погодные условия, значительные отключения, неопределенность прогноза ветра и / или неопределенность прогноза нагрузки.
Conservative Operations : объявляется, когда SPP определяет необходимость консервативного управления системой в зависимости от погодных, экологических, операционных, террористических, кибер-событий или других событий.
Максимальное количество уведомлений об аварийном генерировании : выдается, когда SPP предвидит необходимость использования аварийных диапазонов ресурсов.
Energy Emergency Alert Level 1: Объявляется, когда все доступные ресурсы задействованы для выполнения обязательств, и SPP находится под угрозой невыполнения требуемых операционных резервов.
Energy Emergency Alert Level 2: Объявляется, когда SPP больше не может обеспечивать ожидаемые потребности в энергии и является энергодефицитным субъектом, или когда SPP предвидит или внедрил процедуры вплоть до прерывания твердых обязательств по нагрузке, но исключая его.
Уровень оповещения о чрезвычайной ситуации в области энергетики: На этом уровне SPP использует операционные резервы, так что они имеют резервы ниже требуемого минимума, и инициировал помощь через Группу распределения резервов.