Расчет тока нагрузки: Расчёт величины тока по мощности и напряжению

Содержание

Расчет тока и мощности | ИП Субботин


Для расчета цепи трехфазного переменного тока и выбора параметров элементов сети, необходимо знать расчетное значение потребляемой активной мощности. Напомним, что физически активная мощность представляет собой энергию, которая выделяется в единицу времени в виде теплоты на активном сопротивлении участка цепи. Единица активной мощности — Вт.

Иногда, в паспорте (или на шильдике) электрооборудования может быть указано значение полной мощности, которая больше активной мощности на величину коэффициента мощности (косинуса фи).

Ниже приведены онлайн калькуляторы для расчета тока и мощности в однофазной сети 220 В или трехфазной сети 380 В, 6 кВ и 10 кВ.

При определении Расчетной мощности или тока нагрузки должны учитываться единичные номинальные мощности или потребляемые токи всех электроприемников и потери мощности в питающих линиях. Номинальные (ещё их называют установленные) мощности указывают в паспортах электроустановок.

Значения коэффициента реактивной мощности зависят от параметров подключаемых электроприемников. В наших онлайн калькуляторах используются самые распространенные значения, в соответствии с действующими нормами и правилами.

Расчет трехфазного и однофазного тока по мощности

При выборе номинального тока защитного коммутационного аппарата (например, автоматического выключателя), необходимо полученное значение расчетного тока округлить к ближайшему большему току по принятому в нашей стране ряду номинальных токов выключателей.

При выборе номинального первичного тока трансформатора тока, также необходимо округлить полученное значение расчетного тока к ближайшему большему току по ряду номинальных токов трансформаторов.

Расчет трехфазной и однофазной мощности по току

Максимальная мощность присоединяемых энергопринимающих устройств, указываемая в технических условиях на технологичкеское присоединение, это мощность, которую могут потреблять из сети элекроприемники при их максимальной единовременной загрузке.

Величина максимальной мощности больше расчетной мощности, так как она не учитывает Коэффициенты спроса и одновременности.

Так, например, абонентам, имеющим однофазный ввод 220 В с максимальной мощностью 5 кВт и вводной коммутационный аппарат на 25 А, получив технические условия на увеличение максимальной мощности до трехфазных 15 кВт, также необходим вводной автоматический выключатель на 25 А, но уже трехфазный, на 380 В.

Наша строительная компания оказывает услуги по проектированию электроснабжения (в том числе временного и резервного) жилых, общественных и промышленных зданий. В составе проекта обязательно должен быть раздел по расчету электрических нагрузок. Предлагаем вам пример расчета электрических нагрузок садового товарищества на территории которого 229 земельных участков, который был выполнен нашей компанией в 2016 году:

пример расчета.

Также, мы берем на себя все функции по выполнению строительно-монтажных работ (см. страницу Электромонтажные работы).

Если у вас остались вопросы, наши специалисты с радостью вам помогут. Позвоните нам прямо сейчас по телефону +7 (903) 137-59-05, или воспользуйтесь формой обратной связи.

Способ расчета показателя силы тока при выборе нужного сечения проводов

Наша компания предоставляет услуги по разработке электропроекта в квартирах. Мы подготовили для Вас эту статью с полезной информацией. Надеемся, что Вам она пригодится.

В течение реализации электропроекта, чтобы вычислить возможную потерю напряжения, необходимо обязательно знать такие величины, как нагрузка и длина всех отдельных участков в сети. Только после этого можно будет непосредственно начинать проектирование расположения электрической сети. С имеющимися показателями составляется расчетная схема. Она различна для 3-фазных сетей и 1-фазных.

В первом случае вычисленная нагрузка сети делится на три части, которые распределяются одинаково по 3-м фазам. Однако на практике не всегда получается распределить нагрузку равномерно. Точнее всего это можно сделать с сетями, в которых работают 3-фазные двигатели. Если же в них применяются 1-фазные потребители, то сделать это намного сложнее. Такие сети с 3-фазными двигателями устанавливаются в городских системах снабжения электричеством потребителей. В них обычно действуют 1-фазные приемники электричества, поэтому в расчете нагрузки, поделенной на три равные части, всегда есть небольшие отклонения. Но во время проектирования устанавливаются равные части показателя нагрузки. Такой подход позволяет упростить процесс проектирования. Обычно делается расчетная схема только на одну линейную часть сети, т.е. на одну фазу. Показатели к остальным фазам берутся, как равносильные. В схеме обозначаются дополнительно места монтирования плавких предохранителей и аппаратов защиты сети от возможных сбоев и аварийных ситуаций.

Кроме всего этого во время проектирования электрической сети нужно обязательно учитывать особенность плана здания и разреза его помещений. Это необходимо потому, что в некоторых помещениях ранее уже была установлена электропроводка. На ней обычно указываются электротоки и мощность подключаемых приборов, в число которых входят розетки, осветительные приборы и т.п.

Способ расчета силы тока во время составления проекта базируется на уже существующем плане жилого населенного пункта или производственного предприятия. На нем обозначаются все точки включения разных групп электроприемников. Это могут быть отдельные дома, или просто знания производственного предприятия. При отсутствии такого плана невозможно сделать точный проект проектирования электросети. От этого в последующем зависит качество проведения электромонтажных работ.

На схеме длина отдельного участка электросети помечается согласно выбранному масштабу плана в целом. Если же чертежа нет, то тогда длины отдельных участков сети помечаются в реальном размере. Только в таком случае можно составить проект электросети без погрешностей.

Когда записывается расчетная схема электросети, соблюдать масштабирование, при нанесении на нее участков сети, не обязательно. Главное, чтобы верно были нанесены участки соединения отрезков электросети.

Рисунок A

На рисунке А показан пример схемы электрической линии наружного монтажа. По ней доставляется ток в населенный пункт силой в 380/220В. На ней начерчены участки сети, которые измеряются в метрах. Они располагаются, как слева, так и сверху. Показана и нагрузка с помощью стрелок вправо и вниз. На них указаны расчетные мощности. Их измеряют в киловаттах. На приведенном примере схемы главной, магистральной линией является отрезок АБВ. От него идут ответвления. Это отрезки ВЕ, БД, ВГ.

Вычисление расчетных мощностей электросети

Вычисление расчетных мощностей электросети (нагрузок) достаточно сложная работа. Она выполняется, как при создании проекта «с нуля», так и во время реконструкции объекта и его сетей. Каждый из подключенных приборов (люстра, телевизор, холодильник и т.д.) берут от сети определенное номинальное число мощности при заданном номинальном значении напряжения на зажимах. Данная мощность берется за расчетную величину для конкретного приемника электричества. Потом осуществляется определение значения расчетной мощности для электродвигателя сети. Данная работа намного сложнее, чем предыдущая. Полученный верный результат зависит от крутящегося момента. Он связан с двигателем подключаемых механизмов, в число которых входят вентилятор, станок и транспортер. Вычисленная номинальная мощность помечается на корпусе двигателя. Данный показатель отличается от фактически существующей мощности. Получается, что, например, нагрузка токарного станка число не константное. Оно меняется от толщины стружки, которая снимается с детали, а также от размера объекта обработки.

Вычисление расчетной мощности двигателя является трудной задачей еще и потому, что в ходе работы следует принимать во внимание количество возможно подсоединенных приемников электричества. А это играет важную роль в ходе проведения электромонтажных работ.

Примером тому выступает высчитывание нагрузки для электросети, которая предназначена для обеспечения энергией мастерской. Там функционируют тридцать электрических двигателей. Часть из них всегда работают без остановки. К ним относят двигатели вентиляторов. А вот двигатели станков работают в режиме с определенными перерывами. Часть из них вообще функционируют с неполной нагрузкой. Поэтому расчетная мощность сети в этой ситуации признается за переменную величину. Всегда берется данное значение с запасом, т.е. максимальный показатель. После определяется максимальный средний показатель за промежуток времени, равный тридцати минутам.

Формула расчета мощности электрических приемников, определяемой в кВт.

Р = Кс х Ру

Кc – коэффициент, показывающий величину спроса при максимально возможной нагрузке. Данный показатель рассчитывается при максимальном числе приемников. Если определяется коэффициент двигателя, то необходимо обязательно рассчитывать нагрузку приемников каждого в отдельности.

Py – мощность определенной группы электрических приемников, которая узнается путем сложения номинальной мощности всех приемников. Рассчитывается в кВт.

Вычисление показателя расчетного тока электрической линии, как для одного приемника, так и для группы.

Когда предстоит задача отобрать диаметр сечения электрического прибора, тогда нужно обязательно выяснить и размер расчетного тока. Определяется два показателя. Один базируется на показателе плотности, а другой на условиях нагревания.

Формула вычисления расчетного тока 3-х фазного электрического приемника.

Где Р – нагрузка приемника, рассчитываемая в кВт.

Un- величина номинального напряжения приемника в комплекте с зажимами. Определяется, как величина линейного, межфазного напряжения в сети
Cos ? — константная величина мощности приемника.

Выше представленная формула используется для расчета мощности тока из группы однофазных или 3-х фазных приемников. Ко всему этому прилагается условие того, все имеющиеся приемники подсоединяются в одинаковых размерах к каждой отдельной фазе из трех возможных. Есть же специальная формула расчета мощности для 1-фазного приемника или нескольких, образующих группу, подсоединенных только к одной фазе 3-фазной сети.

Uнф – значение номинального напряжения каждого отдельного приемника, которое равно показателю фазного напряжения сети. В этом месте и осуществляется подсоединение приемников. Вычисляется значение в ваттах.

Cos ? — константная величина мощности приемника. Для лампочек света и нагревательных приборов данное значение равно единице. Это делает процесс расчета быстрее и проще. 
Вычисление тока по существующей расчетной схеме электросети

Для примера берем электросеть небольшого жилого поселка. Она изображена на рисунке А. На нем расчетная нагрузка каждого отдельного дома, которая присоединяется к общей линии электросети, изображается с помощью стрелок. В конце стрелки написано значение, высчитанное в киловаттах. Чтобы создать проект проведения электричества в жилой поселок и отобрать необходимый диаметр сечения проводов, нужно вычислить нагрузку на все имеющиеся участки.

Расчет производится на базе первого закона Кирхгофа. Он говорит, что для любой точки электросети общая сумма поступающих токов может быть равна суммарному значению всех выходящих токов. Этот закон используется только для расчета нагрузок, выраженных в киловаттах.

Пример

Требуется найти наилучший, с точки зрения оптимальности, вариант распределения нагрузки по разным участкам электрической линии. Так на участке, длина которого равна восьмидесяти метров, в самой завершающей точке Г, где происходит вход его в общую сеть, нагрузка равна девяти киловаттам. На ответвлении в сорок метров нагрузка уже рассчитывается путем сложения нагрузок от домов, примыкающих к конечной точке ответвления ВГ. Т.е. 9+6=15 кВт. Чуть далее, на расстоянии в пятьдесят метров, нагрузка в точке В уже равна сумме трех показателей, а именно 15+4+5=24 кВт.

Таким же способом происходит расчет и всех оставшихся участков электросети. Чтобы сделать работу проще и быстрее, все вышеперечисленные значения указываются в строго определенном порядке. На рисунке А величины длины участков электролинии отмечаются в порядке слева и сверху, а нагрузка – справа и снизу. И наконец, любое проектирование электросети обязательно должно учитывать токи в электроустановочных зданиях, где происходит утечка.

Задание

Например, в ситуации с мастерской, 4-хпроводная электролиния, характеризуемая напряжением в 380/220В, осуществляет питание 30 электрических двигателей. Получается, что сумма мощностей равна сорока восьми киловаттам. Т.е. Py1 = 48 кВт. Сумма мощностей лампочек для света равна двум киловаттам. Ру2 = 2 кВт. Константное значение на спрос для осветительной и силовой нагрузки равно соответственно Кс2=0,9 и Кс1=0,35. Среднее константное значение мощности для всей в целом установки равно cos ф=0,75. Вопрос: вычислить расчетный ток электролинии.

Решение

Сначала производим расчет нагрузки электрических двигателей.

P1 = 0,35 х 48 =16,8 кВт

Далее рассчитываем расчетную нагрузку для осветительных приборов.

Р2=0,9 х 2=1,8 кВт.

Теперь считаем конечную сумму мощностей.

Р= 16,8 + 1,8= 18,6 кВт.

Итого, расчетный ток вычисляем по формуле

Вычислив приблизительное значение расчетного тока, можно проверить правильность создания проекта прокладывания электросети и проведения монтажных работ.

Выбор мощности, тока и сечения проводов и кабелей

Выбор мощности, тока и сечения проводов и кабелей

Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки ( открытой проводки) на сечение провода:

  • для медного провода 10 ампер на миллиметр квадратный,
  • для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8. Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора зашитных средств, кабельно-проводниковых материалов и электрооборудования.

Медные жилы, проводов и кабелей

Алюминиевые жилы, проводов и кабелей

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами.

Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами.

Допустимый длительный ток для проводов с медными жилами

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных.

* Токи относятся к проводам и кабелям с нулевой жилой и без нее.

Допустимый длительный ток для кабелей с алюминиевыми жилами

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных.

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки.

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях.

Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:

  • Медь, U = 220 B, одна фаза, двухжильный кабель

Р, кВт

1

2

3

3,5

4

6

8

I, A

4,5

9,1

13,6

15,9

18,2

27,3

36,4

Сечение токопроводящей жилы, мм2

1

1

1,5

2,5

2,5

4

6

Макс. допустимая длина кабеля при указанном сечении, м*

34,6

17,3

17,3

24,7

21,6

23

27

  • Медь, U = 380 B, три фазы, трехжильный кабель

Р, кВт

6

12

15

18

21

24

27

35

I, A

9,1

18,2

22,8

27,3

31,9

36,5

41

53,2

Сечение токопроводящей жилы, мм2

1,5

2,5

4

4

6

6

10

10

Макс. допустимая длина кабеля при указанном сечении, м*

50,5

33,6

47,6

39,7

51

44,7

66,2

51

* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля

Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля.

Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках.

Сечение жил, мм2

Проводники

медных

алюминиевых

Шнуры для присоединения бытовых электроприемников

0,35

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

0,75

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

1

Незащищенные изолированные провода для стационарной электропроводки внутри помещений:

непосредственно по основаниям, на роликах, клицах и тросах

1

2,5

на лотках, в коробах (кроме глухих):

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

однопроволочных

0,5

многопроволочных (гибких)

0,35

на изоляторах

1,5

4

Незащищенные изолированные провода в наружных электропроводках:

по стенам, конструкциям или опорам на изоляторах;

2,5

4

вводы от воздушной линии

под навесами на роликах

1,5

2,5

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

1

2

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

однопроволочных

0,5

многопроволочных (гибких)

0,35

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

1

2

Продукция:

Услуги:

НОВИНКА
ECOLED-100-105W-
13600-D120 CITY Светильник используют для освещения территорий предприятий, автостоянок, дворов, складских и производственных помещений. ПОДРОБНЕЕ

Калькулятор мощности трехфазного переменного тока • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Однофазный и трехфазный ток

Однофазную сеть можно сравнить с проселочной дорогой — оно не позволяет получить большую мощность. Трехфазную сеть можно сравнить с автомагистралью — она обычно имеется в промышленных зданиях для питания оборудования большой мощности

Установленный на столбе однофазный трансформатор, предназначенный для подачи электроэнергии в индивидуальные жилые дома (Канада)

Термин «фаза» относится к распределению электрической энергии. Для далеких от физики людей однофазную и трехфазную сеть можно сравнить с иллюстрациями выше. Однофазная сеть — как проселочная дорога, ее возможности по мощности невысоки и используется она в основном в жилых домах и квартирах. Однофазная сеть проста и экономична. Однако однофазную сеть нельзя использовать для питания эффективных трехфазных электродвигателей. С другой стороны, трехфазная сеть — как автомагистраль, она позволяет использовать мощные нагрузки и обычно применяется в промышленных зданиях и намного реже в индивидуальных жилых домах и квартирах. Все мощные потребители энергии, такие как водонагреватели, большие электродвигатели и системы кондиционирования воздуха обычно подключаются к трехфазной сети.

В однофазной сети используются два или три провода. Всегда имеется один фазный провод и один провод, называемый нейтралью или нулевым проводом. Ток течет между этими двумя проводами. Если однофазная сеть содержит заземляющий провод, то используется трехпроводная сеть. Однофазная сеть хороша в тех случаях, когда типичными нагрузками являются чисто активные потребители, например, традиционные лампы накаливания и электрические обогреватели. Однофазная система не годится для питания мощных электродвигателей.

Установленная на столбе группа из трех трансформаторов, обеспечивающая трехфазное питание небольшой промышленной установки

В трехфазной сети используются три провода, называемые фазными или просто фазами. По этим проводам текут синусоидальные токи со сдвигом фаз относительно друг друга на 120°. В трехфазной системе может быть три или четыре провода. Если имеется четвертый провод, то трехфазную сеть можно использовать для подачи однофазного питания (три линии), например, в индивидуальные жилые дома. При этом от каждой фазы в нагрузку (дом) подается примерно одинаковая мощность. Нейтральный провод часто имеет меньшее сечение, потому что фазные токи взаимно гасятся и по нейтральному проводу обычно течет совсем небольшой ток. Трехфазная система обеспечивает постоянную передачу мощности в нагрузку, что позволяет подключить более высокую нагрузку.

Определения и формулы

Генерация трехфазного тока

В простейшем трехфазном генераторе имеется три идентичных обмотки, расположенных под углом 120° по отношению друг к другу. В результате с обмоток снимаются напряжения (фазы) со сдвигом по фазе 120°. Эти три напряжения не зависят друг от друга и их мгновенные значения определяются формулами:

Здесь Up — пиковое значение (амплитуда) напряжения в вольтах, ω — угловая частота в радианах в секунду и t — время в секундах. Напряжение, наведенное в обмотке 2, отстает от напряжения в обмотке 1 на 120°, а напряжение, наведенное в обмотке 3, отстает от напряжения в обмотке 1 на 240°. Ниже на рисунке приведены векторные диаграммы и формы колебаний напряжений генератора:

Если коэффициент мощности равен единице, то в каждой фазе трехфазной системы напряжение, ток и мощность сдвинуты относительно друг друга на 120°; последовательность фаз на этом рисунке U₁, U₂, U₃, потому что U₁ опережает U₂, U₂ опережает U₃, и U₃ опережает U₁.

Преимущества трехфазных систем

  • По сравнению с однофазными двигателями, трехфазные двигатели имеют более простую конструкцию, высокий пусковой момент, высокие коэффициент мощности и эффективность, более компактны.
  • Передача и распределение трехфазной электроэнергии дешевле в сравнении с однофазной, так как для этого можно использовать провода меньшего сечения при существенном уменьшении стоимости материалов и трудозатрат.
  • В отличие от пульсирующей мощности однофазной системы, мгновенная мощность трехфазной системы постоянна, что обеспечивает плавность вращения и отсутствие вибрации двигателей и другого оборудования.
  • Размеры трехфазных трансформаторов меньше однофазных трансформаторов аналогичной мощности.
  • Трехфазную сеть можно использовать для питания однофазных нагрузок.
  • Выпрямление трехфазного тока происходит с меньшей амплитудой пульсаций, по сравнению с выпрямлением однофазного тока.

Последовательность фаз

Последовательность фаз определяется временем, при котором напряжения трех фаз достигают положительного максимума. Последовательность фаз называют также порядком фаз. На рисунке выше последовательность фаз 1-2-3, так как фаза 1 достигает положительного максимума раньше, чем фаза 2, а фаза 3 достигает положительного максимума позже фазы 2. Отметим, что нам безразлично направление вращения ротора генератора, потому вращающийся по часовой стрелке ротор можно обойти и мы будем наблюдать вращение против часовой стрелки. Нам интересен только порядок чередования фаз напряжений, вырабатываемых генератором.

Для определения порядка фаз на векторной диаграмме нужно знать, что векторы всегда вращаются против часовой стрелки. Например, на этих трех чертежах последовательность чередования фаз снова U₁, U₂, U₃:

Фазное напряжение и фазный ток

Фазным называется напряжение между каждым из трех фазных проводов и нейтралью. Его также называют напряжением между фазой и нейтралью. Ток, которые течет в нагрузке между фазным проводом и нейтралью, называется фазным током.

Линейное напряжение и ток

Линейным называется напряжение между любыми двумя фазами (линиями). Ток, протекающий в каждой из линий, называется линейным.

Симметричные и несимметричные системы и нагрузки

В сбалансированной (симметричной) трехфазной системе токи во всех трех фазах равны, а сумма всех токов равна нулю, поэтому ток по нейтрали не течет. Амплитуды и частоты напряжений и токов одинаковые. Отличаются они только сдвигом фаз: напряжение в каждой фазе отстает от предыдущей на 2π/3, или на 1/3 цикла, или на 120°. Векторная сумма трех напряжений равна нулю:

То же можно сказать и о токах в симметричной системе:

Если три нагрузки, присоединенные к трем линиям, имеют одинаковую величину и коэффициент мощности, она также называются сбалансированными или симметричными.

Линейные и нелинейные нагрузки

В линейных нагрузках в цепях переменного тока напряжения и токи имеют синусоидальную форму и в любое время ток в нагрузке прямо пропорционален напряжению на ней. Примерами линейных нагрузок являются нагреватели, лампы накаливания. конденсаторы и катушки индуктивности. Все линейные нагрузки подчиняются закону Ома. В линейных нагрузка коэффициент мощности равен cos φ. Подробнее о нелинейных нагрузках — в нашем Калькуляторе активной и реактивной мощности.

В нелинейных нагрузках ток не пропорционален напряжению и содержит гармоники основной частоты 50 или 60 Гц. Примерами нелинейных нагрузок являются блоки питания компьютеров, лазерные принтеры, светодиодные и компактные люминесцентные лампы, электронные регуляторы оборотов электродвигателей и многие другие потребители электроэнергии. Искажение формы гармонических колебаний тока приводит к искажению формы напряжения. К нелинейным нагрузкам неприменим закон Ома. В таких нагрузках коэффициент мощности не равен cos φ.

Соединение треугольником и звездой

Три обмотки трехфазного генератора можно присоединить к нагрузке шестью проводами, по два на обмотку. Для уменьшения количества проводов обмотки присоединяются к нагрузке тремя или четырьмя проводами. Эти два способа подключения называются треугольником (Δ) и звездой (Y).

В соединении треугольником начало каждой обмотки соединяется с концом следующей обмотки. Таким образом энергию можно передавать только по трем проводам.

Соединение звездой (слева) и треугольником (справа)

В симметричной соединении треугольником напряжения равны по амплитуде, отличаются по фазе на 120° и их сумма равна нулю:

В симметричной четырехпроводной системе соединения звездой с тремя одинаковыми подключенными к каждой фазе нагрузками мгновенное значение тока, текущего по нейтрали, равно сумме трех фазных токов i₁, i₂, и i₃, которые имеют одинаковые амплитуды Ip и сдвинуты по фазе на 120°:

Напряжение и мощность в симметричной трехфазной нагрузке при соединении звездой

Соединение звездой; I₁, I₂, и I₃ — фазные токи, которые равны линейным токам

Полная мощность в трехфазной системе является суммой мощностей, потребляемых нагрузками в каждой из трех фаз. В связи с тем, что нагрузки симметричные, в каждой фазе потребляется одинаковая мощность и полная активная мощность во всех трех фазах равна

Здесь φ — разность фаз между током и напряжением. Поскольку в трехфазном соединении звездой фазное Uph и линейное среднеквадратичное напряжение UL связаны как

а среднеквадратичное значения линейного и фазного токов равны

полная активная мощность определяется следующим уравнением:

Полная реактивная мощность равна

Комплексная мощность:

И, наконец, полная мощность в трех фазах определяется формулой:

Напряжение и мощность в симметричной трехфазной нагрузке при соединении треугольником

Соединение треугольником; I13, I23, и I32 — фазные токи, а I1, I2, и I3 — линейные токи; при этом IL = √3∙Iph

При соединении треугольником нейтральный проводник отсутствует и конец одной обмотки генератора соединяется с началом следующей обмотки. Фазное напряжение — это напряжение на каждой обмотке. Линейное напряжение — это напряжение между двумя фазами, то есть также на каждой из обмоток. Таким образом, среднеквадратичные напряжения на обмотках и между фазами одинаковые, то есть для соединения треугольником можно написать

При соединении треугольником фазные токи — это токи, текущие через фазные нагрузки. Мы рассматриваем симметричную систему, поэтому фазные среднеквадратичные значения токов Ip1, Ip2 и Ip3 по амплитуде равны (Ip) и отличаются по фазе на 120°:

Как мы уже упоминали, общая мощность в трехфазной системе — это сумма мощностей, потребляемых в нагрузках трех фаз:

где φ — сдвиг фаз между током и напряжением. Поскольку при соединении треугольником среднеквадратичные значения фазного Uph и линейного напряжений UL равны,

а среднеквадратичные значения линейного и фазного токов связаны формулой

активная мощность определяется следующим уравнением:

Полная реактивная мощность равна

Комплексная мощность:

И полная мощность в трех фазах:

Отметим, что приведенные выше уравнения для мощности при соединении звездой и треугольником одинаковые. Мы используем их в этом калькуляторе.

То, что эти формулы мощности для звезды и треугольника одинаковые, иногда приводит к ошибочным выводам о том, что можно соединить обмотки одного и того же электродвигателя звездой или треугольником и потребляемая мощность (и ток!) не изменятся. Конечно, это неправильно. И если мы в калькуляторе соединение звездой изменим на треугольник, не изменяя нагрузку, мы увидим, что мощность и потребляемый ток изменятся.

Рассмотрим пример. Трехфазный электродвигатель подключен по схеме треугольника и работает на полной номинальной мощности при линейном напряжении UL и линейном токе IL. Полная мощность в вольт-амперах (ВА) равна

Затем обмотки того же двигателя соединили звездой. Линейное напряжение, приложенное к каждой обмотке, уменьшилось в 1/1,73 раза, при этом сетевое напряжение осталось прежним. Ток в каждой обмотке уменьшился в 1/1,73 раза по сравнению с током, потребляемым при соединении треугольником. Полная мощность также уменьшилась:

Таким образом, полная мощность при соединении звездой равна одной трети мощности при соединении треугольником для нагрузки с тем же импедансом. Очевидно, что полный момент двигателя, обмотки которого соединены звездой, будет в три раза меньше момента того же двигателя при соединении обмоток треугольником.

Иными словами, хотя новая мощность для соединения звездой рассчитывается по той же формуле, что и для треугольника, в расчет нужно вставить другие величины, а именно, напряжение и ток. уменьшенные в 1,73 раза (то есть в квадратный корень из 3).

Расчет симметричной нагрузки по известным напряжению, току и коэффициенту мощности

Для расчета симметричной нагрузки (одинаковой в каждой фазе) по известным напряжению, току и коэффициенту мощности (опережающему или отстающему) используются следующие формулы:

Импеданс нагрузки
Z

В полярной форме:

В комплексной форме:

Расчет тока и мощности по известным напряжению и нагрузке

Фазный ток

По закону Ома, имеем:

Преобразование из прямоугольных координат в полярные и наоборот

Для преобразования из прямоугольных координат R, X в полярные координаты |Z|, φ, используйте следующие формулы:

Треугольник импеданса

В этих формулах R всегда положительно, а X положительно для индуктивной нагрузки (ток отстает от напряжения) и отрицательно для емкостной нагрузки (ток опережает напряжение).

Активное
Rph и реактивное Xph сопротивление нагрузки

Импеданс конденсатора и катушки индуктивности

Параллельная нагрузка RLC

Параллельное соединение RLC

Для расчета используйте наш Калькулятор импеданса параллельной RLC-цепи.

Последовательная нагрузка RLC

Последовательное соединение RLC

Для расчета используйте наш Калькулятор импеданса последовательной RLC-цепи

Более подробную информацию о нагрузки в форме RLC-цепи вы найдете в наших калькуляторах для расчета импеданса:

Примеры расчетов

Пример 1. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех цепей с равными импедансами Zph = 5+j3 Ом подключена звездой к трехфазной сети с линейным напряжением 400 В 50 Гц. Рассчитать фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 2. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех цепей с равными импедансами Zph = 15 ∠60° Ом подключена звездой к трехфазной сети с фазным напряжением (между фазой и нейтралью) 110 В 50 Гц. Определить тип нагрузки (емкостная или индуктивная) фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 3. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех обмоток с равными импедансами и эквивалентной схемой в виде включенных последовательно сопротивления Rph = 20 Ом и индуктивности Lph = 440 мГн подключена звездой к трехфазной сети с фазным напряжением (между фазой и нейтралью) 230 В 50 Гц. Рассчитайте фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности. Найти линейный ток и потребляемую мощность для той же нагрузки, но соединенной треугольником. Совет: Для определения импеданса каждой обмотки воспользуйтесь Калькулятором последовательной RL-цепи.

Пример 4. Расчет мощности и нагрузки по заданным напряжению и току

Симметричный трехфазный генератор подает фазное напряжение 230 В на включенную звездой нагрузку с отстающим (активно-индуктивным) коэффициентом мощности 0,75. Ток в каждой фазе равен 28,5 А. Рассчитать импеданс нагрузки, активное и реактивное сопротивление в каждой фазе. Также рассчитать полную, активную и реактивную мощности. Описать что произойдет, если для той же нагрузки изменить соединение со звезды на треугольник. Совет: используйте режим определения мощности и нагрузки по заданным току и напряжению, а затем для ответа на последний вопрос воспользуйтесь этим же калькулятором в режиме определения мощности и тока по заданным напряжению и нагрузке.

Пример 5. Расчет мощности и тока по заданным напряжению и нагрузке

Нагрузка, состоящая из трех одинаковых обмоток, имеющих сопротивление Rph = 10 Ом и индуктивность Lph = 310 мГн, подключена треугольником к трехфазной сети с напряжением между фазой и нейтралью 120 В, 60 Гц. Рассчитайте линейное напряжение UL, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности. Как изменятся ток и мощность, если эту же нагрузку подключить звездой? Совет: воспользуйтесь нашим Калькулятором импеданса последовательной RL-цепи для определения импеданса каждой катушки, а затем введите данные в этот калькулятор.

Пример 6. Расчет мощности и тока по заданным напряжению и нагрузке

Нагрузка из трех цепей с равными импедансами Zph = 7 – j5 Ом подключена треугольником к трехфазной сети с линейным напряжением (между двумя фазами) 208 В 60 Гц. Определить тип нагрузки (резистивно-емкостная или резистивно-индуктивная) фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 7. Расчет мощности и нагрузки по заданным напряжению и току

Симметричная нагрузка подключена звездой к симметричному трехфазному генератору с линейным (между двумя фазами) напряжением 208 В 60 Гц. В каждом фазном проводе протекает ток Iph = 20 А с запаздыванием относительно напряжения на 15°. Определите фазное напряжение, импеданс нагрузки в каждой фазе в полярной и комплексной форме, активную и реактивную мощности.

Автор статьи: Анатолий Золотков

Расчет напряжения электропитания на потребителя, определение напряжения на нагрузке

Падение напряжения в электрической сети может стать настоящей проблемой с приобретением современных мощных электроприборов. Чаще всего от этого страдают жильцы старых многоквартирных и частных домов, проводка в которых проложена 20, а то и 30 лет назад. Для энергопотребителей тех времен сечения кабеля было вполне достаточно, однако сегодня практически все пользователи полностью перешли на электрическую технику, эксплуатация которой требует модернизации проводки.

Наглядную картину можно наблюдать на примере освещения. Когда в электрической сети падает напряжение при подключении нагрузки с малым сопротивлением, лампы начинают гореть с меньшей яркостью. Причиной такого явления может быть недостаточное сечение проводки.

Чтобы убедиться в том, что источник выдает больший вольтаж, чем потребитель, необходимо вычислить напряжение на нагрузке. Сделать это можно путем включения в цепь вольтметра или по формуле. В первом случае измерительный прибор, который изначально имеет достаточно высокое сопротивление на входе, необходимо подключать параллельно линии. Это позволяет избежать шунтирования нагрузки и искажения результатов измерения.




Как рассчитать напряжение по формуле

Когда возникают перебои в подаче электроэнергии к приборам, важно проанализировать работу линии. При этом следует определить напряжение на нагрузке по формуле – такое решение дает максимально точный результат и позволяет вычислить другие параметры аналогичным способом. Так, формула расчета напряжения на нагрузке выглядит следующим образом:


U1 – напряжение источника;

ΔU – падение напряжения в линии;

I – ток в линии;

R0 – сопротивление линии.

В том случае, если сопротивление линии и напряжение источника постоянны, напряжение на нагрузке напрямую зависит от силы тока в линии.

Например, при подключении прибора в электрическую сеть с напряжением 220 В, током 10 А и сопротивлением линии, равным 2 Ом, напряжение на нагрузке составит:


В режиме холостого хода падения напряжения в линии нет (ΔU = 0), поэтому напряжение на нагрузке теоретически равно вольтажу источника (U2 = U1). Однако на практике напряжение источника равняться напряжению потребителя не может, поскольку и проводка, и источник электроэнергии, и подключенный к сети прибор имеют собственное сопротивление.

Пример. Напряжение источника составляет 220 В, внутреннее его сопротивление можно не учитывать. Сопротивление проводки – 1 Ом. Сопротивление включенного в сеть электрического прибора – 12 Ом. Суммарное сопротивление цепи составит 13 Ом. Ток в линии рассчитывается по закону Ома и составляет:


Напряжение на нагрузке вычисляется по формуле, приведенной выше:


Таким образом, видно, что напряжение на нагрузке меньше исходных 220 В, остальной вольтаж «теряется» на проводах.

Падение напряжения при подключении нагрузки потребителя

Из-за скачков вольтажа в сети страдают преимущественно жители частного сектора, дачных и коттеджных поселков. Из-за чего же происходит падение напряжения при подключении потребителя?

Первая причина этого явления – недостаточное сечение электрической проводки в доме. Дело в том, что слишком тонкие жилы кабеля не выдерживают большой нагрузки, которая возникает при включении в сеть электроприборов с высокой мощностью. Вторая причина – некачественные контакты в местах соединения проводов, что создает дополнительное сопротивление на линии.

Из-за падения напряжения в обоих случаях есть риск перегрева проводки или участка, в котором находится неисправный контакт. Это может стать причиной полного прекращения подачи электроэнергии на объект и даже возгорания.

Иногда падение напряжения наблюдается не на стороне пользователя, а на линиях электропередач. Оно может возникать вследствие перегрузки подстанции. В этом случае решить проблему может лишь поставщик электроэнергии путем замены устаревшей подстанции на более новую модель с современной релейной защитой. Еще одной причиной низкого напряжения может быть недостаточное сечение проводов на линии электропередач, а также нестабильное распределение нагрузки фаз на стороне подстанции. Как и в первом случае, устранить эти недочеты может только поставщик коммунальной услуги.

Узнать, действительно ли поставщик электроэнергии виноват в «провалах» напряжения, можно, опросив соседей. Если у них подобной проблемы нет, значит, стоит искать причину на территории участка. Зачастую этот вопрос успешно решается путем замены проводки на новый кабель с большим сечением. Однако в некоторых случаях падение напряжения продолжает наблюдаться. Причина может заключаться в так называемых «скрутках» – соединениях проводов путем их скручивания. Дело в том, что каждый некачественный контакт на линии снижает конечное напряжение в сети. Чтобы этого избежать, рекомендуется использовать заводские зажимы, которые гораздо более надежны, чем другие способы соединения электрических кабелей, а также абсолютно безопасны.

В случаях с применением низковольтных аккумуляторных батарей тоже могут наблюдаться «провалы». Если при включении потребителей падает напряжение зарядки источника питания, наиболее вероятная причина этого – некачественные контакты.

При падении напряжения в сети принципиально важно выяснить и устранить причину этого. В противном случае бездействие может обернуться печальными последствиями, особенно если дело касается электрической бытовой проводки. Современные кабели с подходящим сечением и качественно выполненные соединения проводов – залог длительной и эффективной работы всех электроприборов.


Не удается найти страницу | Autodesk Knowledge Network

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}}*

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}}/500 {{l10n_strings.TAGS}} {{$item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}  

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}  

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Расчет домашней сети, определение мощности

Современная внутренняя система электроснабжения дома или квартиры обязана удовлетворять нескольким требованиям. Она должна быть:

  • Рассчитана на длительную безаварийную эксплуатацию
  • Обеспечена устройствами защиты от перегрузки, короткого замыкания, поражения человека электрическим током и значительных скачков напряжения
  • Обеспечена различными приборами, позволяющими повысить комфортность проживания
  • Рассчитана на возможность подключения самых различных устройств

Создание такой системы — непростая задача, требующая вдумчивого и системного подхода. Она предполагает реализацию следующих этапов: расчет, комплектация и монтаж.

В процессе расчета в помещениях выявляются определенные функциональные зоны, требующие подключения каких-либо электрических приборов. Эту работу удобнее всего выполнять с использованием плана квартиры или дома. На плане можно «расставить» предполагаемую мебель, «разместить» люстры и светильники, «установить» электроплиту, холодильник, стиральную машину и т. д. Это позволит определить расположение розеток, а также их тип. Размещение люстр, светильников и подсветок позволит, в свою очередь, найти удобные места для соответствующих выключателей. На этом же плане следует указать мощность оборудования, планируемого к установке.

Разделение всех потребителей на группы

Расчет домашней электрической сети, как правило, начинается с разделения всех потребителей на группы. Под группой понимается несколько потребителей, подключенных параллельно к одному питающему проводу, идущему от распределительного щита. Это группы освещения, группы розеток и т. д. Отдельными линиями запитываются агрегаты большой мощности (стиральные машины и электрические плиты). В отдельную группу выделяются розетки кухни, где подключаются микроволновые печи, электрические духовки, посудомоечные машины, электрические чайники и многое другое.

Результат разделения потребителей на группы вначале лучше отобразить в таблице, дополняя ее в дальнейшем новыми данными (табл. 1).

Группы потребителей электрической энергии с отдельными устройствами защиты могут формироваться тремя способами:

  • По помещениям в квартире (каждому помещению предоставляют отдельную линию)
  • По видам потребителей: освещение, розетки, электроплиты, стиральные машины и т. д
  • Для каждого потребителя, будь то розетка или светильник, проводится отдельная линия электропитания с устройствами защиты (европейский вариант)

Как показывает практика, любая разводка в доме или квартире является комбинацией вышеназванных вариантов в зависимости от конкретных потребностей и условий.

Определение установленной мощности и тока нагрузки

Важным этапом проектирования является определение суммарной потребляемой мощности установленного оборудования в каждой группе.

Величина установленной мощности позволяет рассчитать номинальный ток нагрузки на данную цепь. Номинальный ток — это тот максимальный ток, который будет протекать по фазному проводу. Во внутренней сети квартиры или дома с напряжением 220 В он легко определяется по максимальной потребляемой мощности.

При однофазной нагрузке номинальный ток In ~ 4,5Pm, где Pm — максимальная потребляемая мощность в киловаттах. Например, при Pm = 5кВт In = 4,5 * 5 = 22,5 А.

При распределении потребителей по группам необходимо исходить из следующих условий:

  • Кондиционер, теплые полы, электроплита, стиральная машина и другие мощные потребители с открытыми токопроводящими элементами должны подключаться к отдельным линиям, каждая из которых защищается автоматом защиты и УЗО
  • В отдельную группу выделяются розетки зон с повышенной влажностью (кухни и ванные комнаты)
  • Розетки жилых комнат можно объединить в одну группу
  • Систему освещения жилых комнат желательно разделить на две (или более) группы

Разделение на группы выполняется в распределительном шкафу, где на каждую группу устанавливается автоматический выключатель, а в некоторых случаях и УЗО. Таким образом, каждая из групп за пределами распределительного щита представляет собой отдельную электрическую цепь.

Значение номинального тока нагрузки позволяет определить и характеристики защитных устройств, и сечение жил провода.

Самым простым является расчет группы с одним прибором, например электрической духовкой. Ее потребляемая мощность 2 кВт (определяется по паспорту). Номинальный ток нагрузки In = 4,5 * 2 = 9 А. Таким образом, в цепь питания духовки должен устанавливаться автоматический выключатель с номинальным током не менее 9 А. Ближайшим по номиналу является автомат 10 А.

Расчет токовой нагрузки и выбор автоматического выключателя для группы с несколькими потребителями усложняется введением коэффициента спроса, определяющего вероятность одновременного включения всех потребителей в группе в течение длительного промежутка времени.

Конечно, величина коэффициента спроса зависит от множества объективных и субъективных факторов: типа квартиры, назначения электрических устройств и т. д. Например, коэффициент спроса для телевизора обычно принимается за 1, а коэффициент спроса для пылесоса — 0,1. Существуют даже целые системы расчета коэффициента спроса как для отдельных квартир, так и для многоэтажных домов.

Понятно, что одновременное включение и работа всех электроприборов в квартире или частном доме маловероятны. Поэтому в нашем случае коэффициент спроса для каждой группы можно определить по таблице усредненных значений (табл. 2).

Для расчета розеточной группы кухни примем, что там будут включаться следующие приборы:

  • Электрический чайник — 700 Вт
  • Овощерезка — 400 Вт
  • Микроволновая печь — 1200 Вт
  • Холодильник — 300 Вт
  • Морозильник — 160 Вт
  • Прочее — 240 Вт

Суммарная номинальная мощность этих приборов в группе составляет 3000 Вт.

С учетом коэффициента спроса (равного 0,7) номинальная мощность будет равна 3000 * 0,7 = 2100 Вт.

Номинальный ток нагрузки в цепи этой розеточной группы будет равен 4,5 х 2,1 = 9,45 А.

После аналогичных расчетов дополним табл. 3 полученными значениями потребляемой мощности и номинального тока для остальных групп.

Выбор сечений жил и типа провода

Сечение жил провода для каждой группы рассчитывается в зависимости от предполагаемой суммарной мощности устанавливаемых в ней приборов и расчетных значений силы тока (конечно, с некоторым запасом). Необходимые рекомендации можно получить в «Правилах устройства электроустановок» (ПУЭ) — главном документе электрика.

Табл. 4 отражает соответствие нагрузочных токов и допустимых сечений проводов, регламентированных ПУЭ (применяется для медных проводов, потому что использование алюминиевых в электропроводке жилых помещений в настоящее время запрещено).

Для более точного расчета нужных сечений жил проводов необходимо не только руководствоваться мощностью нагрузки и материалом изготовления жил, но и учитывать способ их прокладки, длину, вид изоляции, количество жил в проводе, условия эксплуатации и другие факторы. Поэтому опытные электрики считают оптимальным вариантом применение жил сечением 1,5 мм2 — для осветительной группы (4,1 кВт и 19 А), 2,5 мм2 — для розеточной группы (5,9 кВт и 27 А) и 4—6 мм2 — для приборов большой мощности (свыше 8 кВт и 40 А). Такой вариант выбора сечений для проводов является, пожалуй, наиболее распространенным при монтаже электропроводки квартир и домов. Он позволяет повысить надежность скрытой проводки, а также создать некоторый «резерв» в случае увеличения мощности нагрузки, например при подключении дополнительных устройств В табл. 5 приведены сечения жил проводов, выбранные для нашего примера.

При выборе типа и марки провода необходимо исходить, прежде всего, из соображений надежности и долговечности. Также следует учитывать допустимое напряжение пробоя изоляции. Особенно это актуально при скрытой проводке. Сегодня для внутренней проводки в доме или квартире лучше всего использовать электрические провода с однопроволочными медными жилами (плоские или круглые) марки ВВГ, ВВгнг и NYM.

Выбор устройств защиты

Дальнейшая работа заключается в проектировании многоуровневой защиты внутренней электрической сети и оборудования от различных аварийных ситуаций. Эта важная и ответственная задача требует определенной подготовки и включает в себя выбор защитных устройств по типу и характеристикам, а также способ их подключения. Для защиты внутриквартирной сети используются, как правило, автоматические выключатели, устройства защитного отключения (УЗО), дифференциальные автоматы, реле напряжения.

Для сети частного дома кроме указанных устройств используются стабилизаторы, а также устройства защиты от импульсных перенапряжений (УЗИП). В квартирной проводке устройство защиты от импульсных перенапряжений и грозовых разрядов не требуется, так как она, как правило, входит в защитную систему всего дома.

Для выбора характеристик защитных устройств используются значения установленной мощности и номинальных токов, полученные в предыдущих расчетах, и принятые сечения проводов. Более подробные сведения о защитных устройствах приведены в разделе «Защитные устройства».

Автоматический выключатель

Автоматический выключатель служит для защиты проводки от токов перегрузки и короткого замыкания. УЗО является эффективным средством защиты от поражения электрическим током и возникновения пожаров, связанных с нарушением проводки. Включение в схему реле напряжения позволяет обеспечить надежную защиту дорогостоящего оборудования от аварийных скачков напряжения.

Выбор автоматического выключателя выполняется в первую очередь по допустимой величине номинального тока для проводки. При этом следует иметь в виду, что автоматический выключатель служит для защиты от сверхтоков именно электропроводки, идущей к розетке, а не подключенного к ней оборудования. Любая техника, как правило, имеет свою встроенную защиту от перегрузок или замыканий. Не защищает автоматический выключатель и людей от поражения электрическим током. Поэтому номинальный ток автоматического выключателя выбирается, прежде всего, исходя из возможностей проводки и ни в коем случае не должен превышать максимально допустимый ток для данного сечения провода. Для бытовых сетей изготавливаются автоматические выключатели с номинальными токами 6; 10; 16; 20; 25; 32; 40; 50; 63 А

При выборе автомата необходимо учитывать также класс прибора, его отключающую способность и класс токоограничения.

Автоматические выключатели класса В необходимо применять для защиты цепей с лампами накаливания и нагревательными приборами. Для всех остальных бытовых нагрузок используют автоматы с характеристикой С. Отключающая способность автоматического выключателя должна быть не менее 4,5 кА и не менее 6 кА для медной проводки сечением 2,5 мм2 и выше. Класс токоограничения следует выбирать не ниже 2, а лучше 3.

Итак, исходя из табл. 6, для нашего примера подойдут автоматические выключатели ВА 63 класса С с током короткого замыкания от 4000 до 6000 А и номинальными токами, соответствующими сечению жил по каждой группе. При этом следует помнить, что номинальный ток автомата должен быть на один порядок меньше значения допустимого тока для защищаемого провода.

Технические характеристики автоматических выключателей отражены в маркировке, имеющейся на корпусе. На рисунке изображен автоматический выключатель на 16 А, класса С с отключающей способностью до 4500 А.

Среди автоматических выключателей различных производителей наибольшее распространение получили устройства серии ВА фирм IEK, ДЭК, ИНТЭС, EKF. Они достаточно надежны и вполне удовлетворяют критерию цена/качество. К более дорогим устройствам премиум класса относятся автоматические выключатели серий ABB, Legrand, Siemens. Они имеют перегрузочную способность по току около 6—8 кА, механическую износостойкость и наработку на отказ, а также дополнительный сервис (крышечки, индикаторы и т. д.). Однако выбор дорогих автоматов предполагает использование и других элементов электрической системы той же ценовой категории.

Устройство защитного отключения (УЗО)

Для правильного выбора УЗО вначале нужно определиться с его конструктивными особенностями (электромеханическое или электронное). Электромеханические УЗО стоят гораздо дороже, но они отличаются высокой степенью надежности и способны гарантированно срабатывать при любом уровне напряжения в сети. Электронные УЗО на порядок дешевле, но их работоспособность (в силу конструктивных особенностей) зависит от стабильности напряжения в сети, что в редких случаях не исключает возникновение аварийной ситуации. Однако чаще всего они работают вполне стабильно, поэтому предпочтение отдается электронным УЗО в силу их доступности и дешевизны. Следует отметить, что их использование вполне оправданно при дополнительной установке стабилизатора напряжения.

Основными характеристиками УЗО являются ток утечки (ток срабатывания), время срабатывания и максимальная величина тока короткого замыкания. Расчетный ток утечки для бытовой сети, как правило, выбирается в пределах от 10 до 30 мА При этом время срабатывания должно составлять в среднем от 10 до 30 мс Максимальная величина тока короткого замыкания Inc — характеристика, определяющая способность прибора выдерживать сверхтоки, возникающие в цепи при коротком замыкании. Понятно, что автоматический выключатель, соединенный в цепи последовательно с УЗО, сработает на отключение, но это произойдет через 10 мс, а за это время УЗО будет находиться под воздействием сверхтока. И если оно сохраняет при этом работоспособность, то его качество считается высоким. Значения максимального тока короткого замыкания для различных УЗО лежат в пределах от 3000 до 10 000 А, а минимально допустимое значение Inc — 3000 А.

При выборе типа УЗО (АС, А, В, S, G) следует учитывать характер нагрузки в защищаемой группе. Если в цепь включаются современные стиральные машины, микроволновки, телевизоры, компьютеры, кондиционеры и т. д, имеющие в своем составе импульсные блоки питания, выпрямители, тиристорные регуляторы, то предпочтительнее устанавливать УЗО типа А. Применение УЗО типа АС допускается в случаях, когда заведомо известно, что в зону защиты УЗО не будут входить устройства с выпрямительными элементами. Селективное УЗО типа S устанавливается, как правило, на вводе после главного автоматического выключателя при организации многоуровневой защиты. Они служат для защиты всей сети дома или квартиры и должны срабатывать с задержкой во времени по отношению к УЗО, защищающим отдельные группы потребителей.

Окончательный выбор УЗО можно выполнить с достаточной точностью, используя значение номинального тока в цепи конкретной группы. Номинальный ток УЗО выбирается из следующего ряда; 10; 13; 16; 20; 25; 32; 40; 63; 80; 100; 125 А

В нашем примере (табл. 7) на группы № 1, 2, 3, 5 устанавливается УЗО с током утечки 30 мА и номинальными токами, на порядок превышающими токи автоматических выключателей.

Кроме того, после главного автомата устанавливается общее УЗО с током утечки 300 мА.

Для защиты УЗО от токов короткого замыкания и токов перегрузки перед ним обязательно устанавливается автоматический выключатель. При этом номинальный ток УЗО должен быть на ступень больше. Смысл такого требования заключается в следующем. Если УЗО и автоматический выключатель имеют равные номинальные токи, то при протекании тока, превышающего номинальный, например на 45 % , т. е. тока перегрузки, автоматический выключатель может сработать в течение одного часа. Это означает, что УЗО длительный период времени будет работать в режиме перегрузки.

Наиболее вероятными местами поражения электрическим током в квартирах и домах являются помещения с повышенной влажностью — кухня и ванная комната. Здесь достаточно много электробытовых приборов с открытыми токопроводящими элементами и естественных заземлителей (водопроводные, газовые трубы). Группы розеток таких помещений требуют установки УЗО в первую очередь.

Все важнейшие характеристики УЗО должны содержаться в маркировке прибора на его лицевой панели и в сопроводительной технической документации.

Эффективная работа УЗО в значительной степени зависит от правильной его установки. Устройство, как правило, подключается в распределительных щитах после главного (вводного) автомата. Допускается установка одного УЗО с током утечки 30 мА на всю квартиру или дом. Недостатками данного решения являются трудность обнаружения места утечки и полное отключение напряжения в квартире при срабатывании устройства.

Приобретая защитные устройства, необходимо обратить внимание не только на параметры приборов, но и на качество их изготовления, подтвержденное соответствующими сертификатами. В любом случае предпочтение следует отдавать фирме-изготовителю, которая предлагает полный ассортимент защитных устройств.

Вместо комбинации из двух устройств — УЗО + автомат — можно использовать дифференциальный автомат, сочетающий в себе функции обоих приборов. Такое решение в значительной степени упрощает их подбор и последующий монтаж.

Для наглядности полученные результаты можно изобразить в виде однолинейной схемы, где хорошо видны взаимосвязи всей электрической сети, а также характеристики ее элементов. Такая схема поможет избежать возможных сшибок при сборке распределительного щита. Следует отметить, что на этой схеме отсутствует система защиты от скачков напряжения (реле напряжения). В ней также не отражены тип электропитания (трехфазный или однофазный) и способ заземления.

В случае деления энергопотребителей на группы рекомендуется устанавливать по одному УЗО 30 мА на группу розеток и на группу освещения, а также по одному УЗО 30 мА на каждую линию, питающую энергоемкие приборы. Такой вариант позволяет избежать неудобств при срабатывании устройства и локализовать аварийную зону. Кроме того, рекомендуется установка одного УЗО с током утечки в 300 мА — на вводе.

Оно устанавливается после автоматического выключателя, а его номинальный ток будет зависеть от расчетной нагрузки и номинального тока автомата. В этом случае лучше применить не обычное, а так называемое селективное УЗО, время срабатывания которого составляет 0,3—0,5 с. Более длительное время срабатывания даст возможность среагировать на возникшую утечку устройствам, защищающим отдельные электроприборы или группы. Только в том случае, если они не сработают, оно отключит всю схему электроснабжения целиком.

Реле напряжения (PH)

Реле напряжения (PH) предназначено для отключения внутренней сети при недопустимых колебаниях напряжения с последующим автоматическим включением после его восстановления. Оно, как правило, оснащается устройством регулировки верхнего и нижнего порога срабатывания

Главным параметром реле напряжения является быстродействие. Это весьма эффективное устройство для защиты оборудования при аварийных ситуациях, которые возникают в результате обрыва нейтрали, перегрузки, перекоса фаз и т. п.

В зависимости от нагрузки устройства могут быть рассчитаны на номинальные токи в 16; 30; 40; 60; 80 А. Эта характеристика обозначает силу тока, которую реле способно пропустить без выхода из строя. Реле напряжения выбирают по значению номинального тока в цепи с 20—30%-ным запасом. То есть, если главный автоматический выключатель имеет номинальный ток в 25 А, то реле напряжения должно быть рассчитано на 32 или 40 А Обычно в домах и квартирах достаточно 30 или 40 А, что соответствует мощности примерно 6 и 8 кВт.

На трехфазном вводе чаще всего устанавливают по однофазному реле напряжения на каждую фазу (при отсутствии трехфазных потребителей).

Схемы вводно-распределительных устройств

Результаты расчетов и подбора защитных устройств, как правило, отражаются в схемах, которые становятся основным документом, позволяющим выполнить правильный монтаж распределительного щита. По схеме можно еще раз проверить правильность выбора защитных устройств и наметить последовательность их монтажа.

Схема распределительного щита. Однофазное питание приходит от вводного устройства с разделенными проводниками РЕ и N. На вводе установлены два вводных однополюсных автомата защиты на 50 А. На схеме они спаренные и вместо них можно использовать один двухполюсный автомат. Далее электропитание поступает на счетчик учета электроэнергии, а затем распределяется по группам. Проводник защитного заземления соединяется с шиной РЕ, от которой осуществляется разводка по помещениям. Рабочий нуль соединяется с шиной N и затем распределяется по группам.

Недостаткам этой схемы является отсутствие после электросчетчика дифференциального автомата защиты, объединяющего в себе функции устройства защитного отключения (УЗО) и автомата защиты электропроводки от сверхтоков (токов короткого замыкания) и перегрузки. Номинал этого дифференциального автомата должен быть 50 А, номинал по току утечки — 30 мА, его время отключения при коротком замыкании должно быть меньше времени отключения вводных автоматов.

На группе розеток кухни и стиральной машины установлен автомат защиты на 16 А и УЗО на 20 А, так как номинал УЗО должен быть больше номинала автомата защиты, установленного с ним в паре.

Схема вводно-распределительного устройства трехфазного тока для среднего частного дама с хозяйственной постройкой. В пластиковый или металлический шкаф вводится кабель с проводниками L1, L2,L3, и PEN. Проводник PEN расщепляется (на главной заземляющей шине) на проводники N (рабочая нейтраль) и РЕ (защитное заземление), которые присоединяются к двум медным шинам. К шине N приходят рабочие нейтрали от всех групп, к шине РЕ подключаются провода защитного заземления, приходящие от устройств большой мощности.

Фазные провода через главный трехфазный автоматический выключатель приходят к счетчику. К нему же подключается и рабочая нейтраль. Затем устанавливается трехфазное УЗО, которое защищает всю электрическую цепь дома. Далее электрический ток распределяется по линиям, защищенным, в свою очередь, автоматами или УЗО.

Первые три автоматических выключателя предназначены для защиты осветительных цепей от перегрузки и короткого замыкания. Отдельная линия, защищенная дифференциальным автоматом, выделена для розеточной группы кухни. Далее следует группа розеток для других помещений, защищенная УЗО и тремя автоматическими выключателями. Последняя линия, состоящая из одного УЗО и двух автоматических выключателей, предназначена для защиты цепей отдельно стоящего помещения. Все группы запитываются от разных фаз L1, L2,L3, а защитные приборы подбираются в соответствии с предварительно разработанной схемой с учетом нагрузок на каждую группу и условиями эксплуатации оборудования.

Схема квартирного распределительного щита, оснащенного (наряду с другими защитными устройствами) реле напряжения. В ней указаны номиналы всех автоматов защиты и сечений электрических кабелей. Энергопотребители разделены на отдельные группы с учетом их функциональных особенностей. Ввод выполнен по трехпроводной системе (с PE-проводником защитного заземления).

Для электропроводки здесь принят кабель марки ПВС. Это круглый гибкий кабель с двойной изоляцией и многопроволочными токопроводящими жилами, который не рекомендуется для скрытой проводки. Кроме того, концы жил такого кабеля в многочисленных соединениях требуют лужения. Разумнее использовать кабель марки ВВГ или NYM. Подобная схема вполне может быть полезна для организации электропитания небольшого частного дома.

Схема распределительного щита может быть выполнена с использованием условных обозначений, принятых правилами ПУЭ. На такой схеме указываются типы и характеристики защитных устройств, а также установка их на конкретные группы.

Тип ввода на приведенной схеме однофазный, с защитным проводником РЕ. Марка и сечения проводов здесь приняты в соответствии с номиналами защитных устройств и типом нагрузки.

Простейшая электрическая схема распределительного щита в квартире при однофазном вводе. Она не предусматривает установку счетчика энергии. В квартиру входят три провода — L, N и РЕ. На фазный провод установлен автоматический выключатель. Далее следует УЗО, которое защищает всю систему от возможности поражения человека электрическим током. Система разделена на девять групп потребителей, защищенных автоматами. Каждая группа подключена к проводнику защитного заземления РЕ.

Схема распределительного щита частного дома с сауной с трехфазным вводом без защитного проводника заземления РЕ, что является ее основным недостатком. В этом случае замыкание фазного провода на любой открытый токопроводящий корпус не вызывает короткого замыкания, необходимого для отключения автомата защиты. Кроме того, на линиях сауны, стиральной машины и группы розеток кухни установлены УЗО, что не защищает цепи от сверхтоков, вызванных перегрузкой или коротким замыканием (УЗО на короткое замыкание не реагирует). Здесь должны быть установлены УЗО + автомат или дифференциальные автоматы, совмещающие функции автомата и УЗО.

Для квартир различной планировки и степени комфортности можно предложить несколько электрических схем распределительных щитов с подбором номиналов устройств защиты.

Примеры оформления схем электропроводки

Каждый проект электроснабжения квартиры составляется с учетом особенностей жилья, типов электропитания, а также индивидуальных запросов. В общем случае для качественного последующего монтажа электрику необходимы:

  • Схема распределительного щита
  • План с размещением осветительных приборов, выключателей и регулирующих устройств
  • План размещения розеток и распределительного щита
  • Планы и схемы могут быть выполнены в достаточно упрощенном виде с использованием условных графических обозначений конкретных устройств. Их наличие поможет подобрать провода, а также электромонтажные и алектроустановочные изделия, необходимые для монтажа

Схема подключения дифференциального автомата, выполняющего функции УЗО и автоматического выключателя.

Схема подключения общего УЗО с выводом нулевого проводника на нулевую шину. Номинал УЗО принят на порядок выше номинала общего защитного автомата.

Однолинейная электрическая схема. Представляет собой систему электропитания однокомнатной квартиры с трехфазным вводом и защитным проводником РЕ. Она включает в себя результаты расчетов сети и наиболее полно отражает все ее особенности. Здесь указаны типы и характеристики защитных устройств, марка и сечения проводов, мощность потребителей. Такая схема позволит правильно укомплектовать и качественно смонтировать распределительный щит.

Смотрите также:

AC DC Формула для расчета тока полной нагрузки

Расчет тока полной нагрузки машины переменного и постоянного тока:

Ток полной нагрузки используется для разработки системы защиты электрооборудования.

Что такое ток полной нагрузки:

Full Load Current — это не что иное, как максимально допустимый ток. Входной ток к машине превышает ток полной нагрузки, значит, электрическая машина может быть повреждена. Из-за чрезмерного протекания тока машина вырабатывает дополнительное тепло (из-за P = I 2 * R)., Это может привести к повреждению изоляции или обмотки электрооборудования. Следовательно, эксплуатация машины при токе ниже полной нагрузки увеличивает срок службы электрического оборудования.

Нагрузка на двигатель переменного тока (переменный ток):

Нагрузки переменного тока состоят из резистивных нагрузок, индуктивных нагрузок. Активные нагрузки: водонагреватель, комнатный обогреватель и т. Д. Индуктивными нагрузками являются индукционная печь, однофазный асинхронный двигатель, трехфазный двигатель и т. Д.

Расчет тока полной нагрузки 3-фазный двигатель:

В большинстве трехфазных систем потребление электроэнергии происходит по схеме звезды и треугольника.Входная мощность (P) в системе одинакова, независимо от подключения.

Мощность в кВт (киловаттах)

В = напряжение +/- 10% в вольтах

I = ток полной нагрузки в амперах

Cos pi = коэффициент мощности

 Трехфазная мощность P = 3 В * I * Cos pi
  Следовательно, ток полной нагрузки трехфазного двигателя I = P / (3 * V * Cos pi)  

кВт = выходная мощность в ваттах ……. Все данные указаны на паспортной табличке.

Посмотрите на приведенную выше формулу, трехфазный ток полной нагрузки равен мощности, деленной на 3 умноженное на произведение линейного напряжения на нейтраль и коэффициента мощности.

Как мы уже говорили, ток полной нагрузки трехфазной системы зависит от типа подключения. Здесь

Iph => Фазный ток

Iline => Линейный ток

Для соединения звездой ток полной нагрузки Iline равен Iph

 Iph = Iline 

Для соединения треугольником ток полной нагрузки Iline в 1,732 раза больше Iph

 л / ч / 1,732 = Iline 

Следовательно, трехфазный ток полной нагрузки I равен

.

I = P / (1.732 * V * Cos pi)

Здесь трехфазный ток полной нагрузки равен мощности, деленной на 1,732-кратное линейное напряжение и коэффициент мощности.

Расчет тока полной нагрузки Однофазный двигатель:

Ток полной нагрузки I однофазного двигателя равен мощности P, деленной на коэффициент мощности, умноженный на напряжение фаза-нейтраль.

 P = V * I * Cos pi 

Ток полной нагрузки I = P / (В x Cos pi) А

В = напряжение +/- 10% в вольтах

I = ток полной нагрузки в амперах

Cos pi = коэффициент мощности

кВт = выходная мощность в ваттах …….Все данные указаны на паспортной табличке двигателя.

Расчет тока полной нагрузки Трехфазный змеевик нагревателя:

Для трехфазного тока полный ток нагрузки для резистивной нагрузки равен трехфазной мощности, деленной на 1,732-кратное напряжение. Здесь коэффициент мощности будет равен единице для резистивных нагрузок.

Как вы знаете формулу мощности,

P = 1,732 x V x I

Ток полной нагрузки I,

I = P / 1,732 * В Ампер.

В = линейное напряжение

I = ток полной нагрузки в амперах

Если рассматривать среднее линейное напряжение, формула тока полной нагрузки принимает вид

I = P / 3 * В Ампер.

кВт = выходная мощность в ваттах ……. Все данные указаны на табличке нагревателя.

Расчет тока полной нагрузки Однофазные нагреватели:

Формула мощности кВт

В = Напряжение

I = ток полной нагрузки в амперах

кВт = выходная мощность в ваттах ……. Все данные указаны на табличке нагревателя.

 P = V X I А 

Ток полной нагрузки для однофазного нагревателя составит,

I = P / V Ампер

Рассчитать через сопротивление:

  1. Измерить сопротивление R змеевика нагревателя с помощью мультиметра.2 *

    рэнд

    См. Также : Как рассчитать падение напряжения

    Расчет тока полной нагрузки Машина постоянного тока (двигатель постоянного тока и генератор постоянного тока):

    постоянного тока => постоянного тока

     P = V X I 

    В = E ± Ia Ra ± Is Rsh + падение щеток (шунтирующая машина)

    V = E ± Ia (Ra + Rsh) + падение щеток (серийная машина)

    В = напряжение питания

    E = задняя ЭДС

    Ia = ток якоря

    Ra = сопротивление якоря

    Is = ток возбуждения

    Rsh = Полевое сопротивление

     Обратная ЭДС e = (pi * N * P * Z / 60 A) 

    Пи = Магнитный поток

    N = скорость станка

    P = количество полюсов

    Z = количество проводников

    A = количество параллельных путей

    P = A для лабораторной обмотки

    А = 2 для волновой обмотки

    Мифы о токе полной нагрузки:

    1. Ток полной нагрузки Для алюминиевого кабеля отсутствует.8 штук за квадратный метр
    2. для медного кабеля 1,2 на квадратный метр
    3. , 3 фазы, 415 В, 0,8 пФ, ток полной нагрузки двигателя 1 л.с. = 1,3 А.
    4. 1 фаза 230 В, 0,8 пФ, ток полной нагрузки двигателя 1 л.с. = 4 А.

    Как рассчитать электрическую нагрузку

    Электрические цепи находят множество применений, включая бытовое, автомобильное и электронное. Электрические принципы применяются независимо от области применения. У вас есть несколько компонентов, распределенных по схеме, которые составляют нагрузку схемы.У вас есть источник энергии. Вы хотите знать характеристики компонентов нагрузки. У вас есть закон Кирхгофа, который, по сути, гласит, что сумма напряжения нагрузки равна сумме напряжений источника. Вы не хотите повредить какие-либо компоненты цепи, поэтому рассчитываете нагрузку.

    Расчет электрической нагрузки в простой цепи

      Рассчитайте электрическую нагрузку для простой линейной цепи, имеющей напряжение источника 9 В и два последовательно включенных резистора по 330 Ом.Второй резистор имеет вывод, идущий на землю. Рассчитайте по следующим уравнениям. Пусть мощность = напряжение * ток (P = VI). Пусть ток = напряжение / сопротивление (I = V / R).

      Примените второй закон Кирхгофа, согласно которому сумма напряжений в цепи равна нулю. Сделайте вывод, что напряжение нагрузки вокруг простой схемы должно составлять 9 вольт. Вычислите, что напряжение нагрузки равномерно распределено на каждом из резисторов, так как они имеют одинаковое сопротивление, и что напряжение на каждом из них должно быть 4.5 вольт (или -4,5 в соответствии с законом Кирхгофа).

      Рассчитайте I = V / R (расчет тока), так что I = 4,5 / 330 = 13,6 мА (миллиампер). Вычислите P = VI = 9 * 0,0136 = 0,1224 Вт. Обратите внимание, что теперь известны все характеристики нагрузки (напряжение, сопротивление, ток и мощность). Будьте осторожны и выбирайте резисторы мощностью 0,5 Вт.

      Используйте онлайн-симулятор линейных цепей для моделирования простых цепей и расчета нагрузочных характеристик. Используйте описанный ниже имитатор линейных цепей под названием «Linear Technology Spice».«Создайте образец схемы и поэкспериментируйте с различными компонентами нагрузки. Рассчитайте характеристики нагрузки, используя уравнения напряжения, тока, сопротивления (или индуктивности) и мощности.

    Расчет электрической нагрузки в доме

      Рассчитайте нагрузку для типичного дома на одну семью с помощью онлайн-калькулятора электрической нагрузки. Воспользуйтесь онлайн-калькулятором электрической нагрузки для дома на одну семью.

      Укажите квадратные метры вашего дома. Введите количество «цепей для малой бытовой техники» и «цепей для стирки» и при необходимости обратитесь к электрической схеме.Если информация недоступна, используйте значения по умолчанию. Введите значения для «Прикрепленные приборы», «Приборы для приготовления пищи», «Отопление или охлаждение» и «Самый большой двигатель». Нажмите «Рассчитать нагрузку».

      Обратите внимание на «Общая расчетная нагрузка», «Расчетная сила тока», «Общая нейтральная нагрузка», «Общая нейтральная нагрузка» и «Общая нейтральная сила тока».

    Калькулятор тока полной нагрузки с формулами | jCalc.NET

    Калькулятор тока полной нагрузки рассчитывает ток полной нагрузки для нагрузок 1-фазного переменного тока, 3-фазного переменного тока и постоянного тока в кВт, кВА или л.с.Включает пошаговые уравнения.

    См. Также

    Параметры калькулятора тока полной нагрузки

    • Напряжение (В):
      • Укажите межфазное напряжение V LL для трехфазного источника переменного тока в вольтах.
      • Укажите напряжение между фазой и нейтралью V LN для однофазного источника переменного или постоянного тока.
      • Выберите расположение фаз: 1 фаза переменного тока, 3 фазы переменного тока или постоянного тока.
    • Нагрузка (S): Укажите нагрузку в кВт, кВА, А или л.с.И укажите коэффициент мощности нагрузки ( pf ) (cosΦ), когда нагрузка указывается в кВт или л.с.

    Расчет тока полной нагрузки для трехфазного источника переменного тока:

    Ток полной нагрузки для 3-фазной нагрузки в кВт рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {\ sqrt {3} \ cdot V_ {LL} \ cdot \ cos {\ phi}} \)

    Где:

    • S кВт : Номинальная мощность в киловаттах (кВт)
    • V LL : Междуфазное напряжение в вольтах.
    • cosΦ: Коэффициент мощности нагрузки.

    Ток полной нагрузки для трехфазной нагрузки в кВА рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {\ sqrt {3} \ cdot V_ {LL}} \)

    Ток полной нагрузки для трехфазной нагрузки в л.с. рассчитывается как:

    \ (I = \ displaystyle \ frac {745.7 \ cdot S_ {hp}} {\ sqrt {3} \ cdot V_ {LL} \ cdot \ cos {\ phi}} \)

    Расчет тока полной нагрузки для однофазной сети переменного тока:

    Ток полной нагрузки для однофазной нагрузки в кВт рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {V_ {LN} \ cdot \ cos {\ phi}} \)

    Ток полной нагрузки для однофазной нагрузки в кВА рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {V_ {LN}} \)

    Ток полной нагрузки для однофазной нагрузки в л.с. рассчитывается как:

    \ (Я = \ Displaystyle \ гидроразрыва {745.7 \ cdot S_ {hp}} {V_ {LN} \ cdot \ cos {\ phi}} \)

    Расчет тока полной нагрузки для источника постоянного тока:

    Ток полной нагрузки для нагрузки постоянного тока в кВт рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {кВт}} {V_ {LN}} \)

    Ток полной нагрузки для нагрузки постоянного тока в кВА рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {V_ {LN}} \)

    Ток полной нагрузки для нагрузки постоянного тока в л.с. рассчитывается как:

    \ (Я = \ Displaystyle \ гидроразрыва {745.7 \ cdot S_ {hp}} {V_ {LN}} \)

    Калькулятор тока полной нагрузки генератора

    Рассчитывает ток полной нагрузки однофазного или трехфазного генератора.

    Параметры

    • Номинальное напряжение (В p ): Номинальное напряжение генератора в вольтах (В).
    • Фаза: Укажите расположение фаз. 1 фаза переменного тока или 3 фазы переменного тока.
    • Мощность генератора (S): Укажите мощность генератора в кВт или кВА.Если номинальная мощность выражена в кВт, вам также необходимо указать коэффициент мощности cos (Φ), который представляет собой число от 0 до 1. Можно использовать приблизительно 0,80, если нагрузка состоит только из двигателей. Для чисто резистивных нагрузок коэффициент мощности cos (Φ) равен 1.

    Как рассчитать ток полной нагрузки трехфазного генератора?

    Ток полной нагрузки для 3-фазного генератора, указанный в кВт, рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {\ sqrt {3} \ cdot V_ {LL} \ cdot \ cos {\ phi}} \)

    Где,
    • S кВт — мощность генератора в киловаттах (кВт).
    • В LL — это линейное номинальное напряжение генератора в вольтах (В).
    • cos (Φ) — коэффициент мощности.
    Например, рассчитайте ток полной нагрузки 3-фазного генератора 50 кВт, 480 В. Расчетный коэффициент мощности нагрузки составляет 0,85 .

    \ (I = \ displaystyle \ frac {1000 \ cdot 50} {\ sqrt {3} \ cdot 480 \ cdot 0.85} \)

    I = 70,8 А.

    Ток полной нагрузки для 3-фазного генератора, указанный в кВА, рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {\ sqrt {3} \ cdot V_ {LL}} \)

    Где,
    • S va — номинальная мощность генератора в киловольт-амперах (кВА).
    • В LL — это линейное номинальное напряжение генератора в вольтах (В).
    Например, рассчитайте ток полной нагрузки 3-фазного генератора
    50 кВА, 480 В.

    \ (I = \ displaystyle \ frac {1000 \ cdot 50} {\ sqrt {3} \ cdot 480} \) .

    I = 60,1 А.

    Как рассчитать ток полной нагрузки однофазного генератора?

    Ток полной нагрузки для однофазного генератора, указанный в кВт, рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {\ cdot V_ {LN} \ cdot \ cos {\ phi}} \)

    Где,
    • S кВт — мощность генератора в киловаттах (кВт).
    • В LN — номинальное линейное напряжение генератора в вольтах (В).
    • cos (Φ) — коэффициент мощности.
    Например, рассчитайте ток полной нагрузки для однофазного генератора
    2 кВт, 120 В. Расчетный коэффициент мощности нагрузки составляет 0,85 .

    \ (I = \ Displaystyle \ гидроразрыва {1000 \ cdot 5} {120 \ cdot 0.85} \)

    I = 19,6 А.

    Ток полной нагрузки для 3-фазного генератора, указанный в кВА, рассчитывается как:

    \ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {\ cdot V_ {LN}} \)

    Где,
    • S кВт — номинальная мощность генератора в киловольт-амперах (кВА).
    • В LN — напряжение между фазой и нейтралью генератора в вольтах (В).
    Например, рассчитайте ток полной нагрузки однофазного генератора
    2 кВА, 120 В.

    \ (I = \ displaystyle \ frac {1000 \ cdot 50} {\ cdot 480} \) .

    I = 16,7 А.

    Как рассчитать допустимую нагрузку электрической цепи

    Понимание емкости и нагрузки становится необходимым, если вы планируете электроснабжение нового дома или если вы рассматриваете возможность модернизации электроснабжения старого дома.Понимание потребностей в нагрузке позволит вам выбрать электрическую службу соответствующей мощности. В старых домах очень часто существующие услуги сильно занижены для нужд всех современных приборов и функций, используемых в настоящее время.

    Что такое электрическая нагрузка?

    Термин « электрическая нагрузка» относится к общему количеству мощности, обеспечиваемой основным источником электричества для использования в ответвленных цепях вашего дома и подключенных к ним осветительных приборах, розетках и приборах.

    Общая электрическая мощность электросети измеряется в амперах (амперах). В очень старых домах с трубчатой ​​проводкой и ввинчиваемыми предохранителями вы можете обнаружить, что исходная электрическая сеть выдает 30 ампер. Чуть более новые дома (построенные до 1960 года) могут рассчитывать на 60 ампер. Во многих домах, построенных после 1960 года (или модернизированных старых домах), стандартная мощность 100 ампер. Но в больших, более новых домах теперь как минимум 200 ампер, а на самом верхнем уровне вы можете увидеть, что электричество на 400 ампер установлено.

    Как вы узнаете, адекватны ли ваши текущие электрические услуги, или как вы планируете новые электрические услуги? Для определения этого требуется небольшая математика, чтобы сравнить общую доступную емкость с вероятной нагрузкой , которая будет размещена на этой емкости.

    Ель / Нуша Ашджаи

    Общие сведения об электрической емкости

    Чтобы рассчитать, сколько энергии нужно вашему дому, нужно рассчитать нагрузку в амперах для всех различных приборов и приспособлений, а затем создать запас прочности.Как правило, рекомендуется, чтобы нагрузка никогда не превышала 80 процентов мощности электросети.

    Чтобы использовать математику, вам нужно понимать взаимосвязь между ваттами, вольтами и амперами. У этих трех общих электрических терминов есть математическая взаимосвязь, которую можно выразить двумя разными способами:

    • Вольт x Ампер = Ватт
    • Ампер = Ватт / Вольт

    Эти формулы можно использовать для расчета мощности и нагрузок отдельных цепей, а также для всей электрической сети.Например, общая мощность 20-амперной и 120-вольтовой ответвленной цепи составляет 2400 ватт (20 ампер x 120 вольт). Поскольку стандартная рекомендация заключается в том, чтобы общая нагрузка не превышала 80 процентов от мощности, это означает, что реальная мощность 20-амперной схемы составляет 1920 Вт. Таким образом, чтобы избежать опасности перегрузки, все осветительные приборы и подключаемые к электросети устройства вместе в этой цепи должны потреблять не более 1920 Вт мощности.

    Достаточно легко прочитать номинальные мощности всех лампочек, телевизоров и других приборов в цепи, чтобы определить вероятность перегрузки цепи.Например, если вы регулярно подключаете обогреватель мощностью 1500 Вт в цепь и включаете в одну цепь несколько осветительных приборов или ламп со 100-ваттными лампами, вы уже израсходовали большую часть безопасной мощности в 1920 Вт.

    Эту же формулу можно использовать для определения мощности всей системы электроснабжения дома. Поскольку основное напряжение в доме составляет 240 вольт, математические расчеты выглядят следующим образом:

    • 240 В x 100 А = 24000 Вт
    • 80 процентов от 24 000 Вт = 19 200 Вт

    Другими словами, ожидается, что электрическая сеть на 100 А обеспечит мощность нагрузки не более 19 200 Вт в любой момент времени.

    Расчет нагрузки

    После того, как вы узнаете мощность отдельных цепей и полную электрическую сеть дома, вы можете сравнить ее с нагрузкой, которую вы можете рассчитать, просто сложив номинальные мощности всех различных приспособлений и приборов, которые будут потреблять электроэнергию в в то же время.

    Вы можете подумать, что это включает в себя сложение мощности всех лампочек осветительных приборов, всех подключаемых устройств и всех проводных устройств, а затем сравнение этой мощности с общей мощностью.Но редко все электроприборы и приспособления работают одновременно — например, нельзя запускать печь и кондиционер одновременно; маловероятно, что вы будете пылесосить, пока работает тостер. По этой причине у профессиональных электриков обычно есть альтернативные методы определения подходящего размера для электрического обслуживания. Вот один из часто используемых методов:

    1. Сложите мощность всех ответвленных цепей общего освещения.
    2. Добавьте номинальную мощность всех штепсельных розеток.
    3. Добавьте номинальную мощность всех постоянных приборов (плиты, сушилки, водонагреватели и т. Д.)
    4. Вычтем 10,000.
    5. Умножьте это число на 0,40
    6. Добавьте 10,000.
    7. Найдите полную номинальную мощность постоянных кондиционеров и номинальную мощность нагревательных приборов (печь плюс обогреватели), затем добавьте в зависимости от того, какое из этих двух чисел больше . (Вы не нагреваете и охлаждаете одновременно, поэтому не нужно складывать оба числа.)
    8. Разделите сумму на 240.

    Это результирующее число дает предполагаемую силу тока, необходимую для адекватного питания дома. Используя эту формулу, вы можете легко оценить текущее электрическое обслуживание.

    Другие электрики предлагают еще одно простое практическое правило:

    • 100-амперная сеть, как правило, достаточно велика, чтобы питать общие электрические цепи небольшого и среднего размера дома, а также одно или два электроприбора, таких как кухонная плита, водонагреватель или сушилка для белья.Этой услуги может хватить для дома площадью менее 2500 квадратных футов, если отопительные приборы работают на газе.
    • Служба
    • на 200 ампер будет обрабатывать ту же нагрузку, что и сеть на 100 ампер, плюс электрические приборы и электрическое отопительное / охлаждающее оборудование в домах площадью до 3000 квадратных футов.
    • Работа на 300 или 400 ампер рекомендуется для больших домов (более 3500 квадратных футов) с полностью электрическими приборами и электрическим нагревательным / охлаждающим оборудованием. Этот размер рекомендуется, если ожидаемая электрическая тепловая нагрузка превышает 20 000 Вт.Обслуживание на 300 или 400 ампер обычно обеспечивается установкой двух сервисных панелей: одна обеспечивает 200 ампер, а вторая — еще 100 или 200 ампер.

    План на будущее

    Как правило, рекомендуется увеличивать размер электрической службы, чтобы сделать возможным расширение в будущем. Точно так же, как 100-амперный сервис быстро стал малоразмерным, когда электрические приборы стали обычным явлением, сегодняшнее 200-амперное обслуживание может когда-нибудь показаться сильно малоразмерным, когда вы обнаружите, что перезаряжаете два или три электромобиля.Негабаритные электрические услуги также позволят установить вспомогательную панель в ваш гараж или сарай, если вы когда-нибудь решите заняться деревообработкой, сваркой, гончарным делом или другим хобби, требующим большого количества энергии.

    Трехфазный ток — простой расчет

    Расчет тока в трехфазной системе был поднят на нашем сайте отзывов, и это обсуждение, в которое я, кажется, время от времени участвую. Хотя некоторые коллеги предпочитают запоминать формулы или факторы, я предпочитаю решать проблему шаг за шагом, используя базовые принципы.Я подумал, что неплохо было бы написать, как я делаю эти расчеты. Надеюсь, это может оказаться полезным для кого-то еще.

    Трехфазное питание и ток

    Мощность, потребляемая цепью (одно- или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока является полной мощностью и измеряется в ВА (или кВА). Соотношение между кВА и кВт — это коэффициент мощности (pf):


    что также может быть выражено как:

    Однофазная система — с этим проще всего иметь дело.Учитывая кВт и коэффициент мощности, можно легко рассчитать кВА. Сила тока — это просто кВА, деленная на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициенте мощности 0,86:

    .


    Примечание: вы можете выполнять эти уравнения в ВА, В и А или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

    Трехфазная система — Основное различие между трехфазной системой и однофазной системой — это напряжение.В трехфазной системе линейное напряжение (V LL ) и фазное напряжение (V LN ) связаны соотношением:


    или как вариант:

    чтобы лучше понять это или получить больше информации, вы можете прочитать статью

    «Введение в трехфазную электрическую мощность».

    Для меня самый простой способ решить трехфазные проблемы — это преобразовать их в однофазную. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную кВт.Мощность в кВт на обмотку (однофазная) должна быть разделена на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), питающий заданную кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общую мощность в кВт (или кВА) и разделите ее на три.

    В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (В LL ):

    линия на нейтраль (фаза) напряжение В LN = 400 / √3 = 230 В
    трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
    теперь просто следуйте описанному выше однофазному методу

    Достаточно просто.Чтобы найти мощность при заданном токе, умножьте его на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в W. Для трехфазной системы умножьте на три, чтобы получить общую мощность.

    Личная записка по методу

    Как правило, я запоминаю метод (а не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или неуверен, правильно ли я их запоминаю. Мой совет — всегда старайтесь запоминать метод, а не просто запоминать формулы.Конечно, если у вас есть суперспособность запоминать формулы, вы всегда можете придерживаться этого подхода.

    Использование формул

    Вывод формулы — пример

    Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL

    Преобразование в однофазную проблему:
    P1ph = P3

    Полная мощность одной фазы S 1 фаза (ВА):
    S1ph = P1phpf = P3 × pf

    Фазный ток I (A) — полная однофазная мощность, деленная на напряжение между фазой и нейтралью (и дано В LN = В LL / √3):
    I = S1phVLN = P3 × pf3VLL

    Упрощение (и с 3 = √3 x √3):
    I = P3 × pf × VLL

    Вышеупомянутый метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.

    Для получения того же результата можно использовать более традиционные формулы. Их можно легко получить из вышеприведенного, например:

    I = W3 × pf × VLL, дюйм A

    Несбалансированные трехфазные системы

    Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаковый, и каждая фаза обеспечивает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичного оборудования.

    Часто, когда задействованы однофазные нагрузки, например, в жилых и коммерческих помещениях, система может быть несбалансированной, так как каждая фаза имеет разный ток и доставляет или потребляет разное количество энергии.

    Сбалансированные напряжения

    К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации, немного подумав, можно распространить вышеупомянутый тип расчета на трехфазные системы с несимметричным током.Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.

    Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 A, фаза 2 = 70 A, фаза 3 = 82 A

    линия на нейтраль (фаза) напряжение В LN = 400 / √3 = 230 В
    Полная мощность фазы 1 = 80 x 230 = 18400 ВА = 18,4 кВА
    Полная мощность фазы 2 = 70 x 230 = 16100 ВА = 16,1 кВА
    Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
    Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

    Аналогичным образом, учитывая мощность в каждой фазе, вы можете легко найти фазные токи. Если вам также известен коэффициент мощности, вы можете преобразовать его из кВА в кВт, как показано ранее.

    Несимметричные напряжения

    Если напряжения становятся несимметричными или есть другие соображения (например, несбалансированный фазовый сдвиг), то необходимо вернуться к более традиционному анализу сети.Системные напряжения и токи можно найти, подробно изобразив схему и используя законы Кирхгофа и другие сетевые теоремы.

    Сетевой анализ не является целью данной заметки. Если вас интересует введение, вы можете просмотреть наш пост: Теория сети — Введение и обзор

    КПД и реактивная мощность

    Другие факторы, которые следует учитывать при проведении расчетов, могут включать эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования — это выходная мощность, деленная на входную, опять же, это легко подсчитать. Реактивная мощность не обсуждается в статье, а более подробную информацию можно найти в других примечаниях (просто воспользуйтесь поиском на сайте).

    Сводка

    Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любую трехфазную задачу можно упростить. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто ток, умноженный на напряжение, поэтому знание этого и напряжения может дать ток.При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и / или прибегать к формулам.

    Определение нагрузки источника питания

    Советы по поиску и устранению неисправностей от нашей технической группы

    Здесь, в Jameco, мы получаем множество звонков и писем от клиентов с просьбами дать советы по устранению неполадок, а также советы о том, как максимально повысить производительность их продуктов.В этой статье приведены советы по устранению наиболее распространенных вопросов, которые мы получаем. Если вы хотите, чтобы мы решили техническую проблему или нашли решение, которое вы считаете достойным, отправьте сообщение по адресу: [электронная почта защищена].

    Вопрос: В техническом описании моего блока питания что-то упоминается о применении полной и минимальной нагрузки. Что такое полная нагрузка, минимальная нагрузка и как узнать ее размер?

    Каждый источник питания предназначен для работы в определенном диапазоне условий, и каждый из них имеет максимальные рабочие условия, превышение которых не допускается.

    полная нагрузка блока питания относится к максимальным рабочим характеристикам блока питания. Если он выдает номинальный ток (такой же, как максимальный ток) при номинальном напряжении, то подключенная нагрузка является полной нагрузкой. Не существует заданного значения для полной нагрузки, потому что каждый блок питания рассчитан на разные характеристики.

    Более важное значение, которое должно волновать многих, — это требование минимальной нагрузки . Это значение необходимо для правильной работы многих импульсных источников питания, а также многих нерегулируемых источников питания.

    Когда не применяется надлежащая минимальная нагрузка, источник питания обычно мерцает и, кажется, быстро включается и выключается. Если оставить вывод без нагрузки, это может произойти. Это связано с тем, что для большинства импульсных и нерегулируемых источников питания выходы необходимо стабилизировать.

    Используя закон Ома: V = IR, вы можете рассчитать минимальную нагрузку, зная номинальное напряжение и минимальный ток.

    I = ток в амперах (A)
    V = напряжение в вольтах (V)
    R = сопротивление в омах (Ω)

    Манипулирование этой формулой дает резистивную нагрузку R = V / I.Отсюда просто введите значения для V и I, и это будет ваше минимальное значение сопротивления нагрузки. Важно: помните о номинальной мощности вашего блока питания. Он должен соответствовать номинальной мощности минимальной резистивной нагрузки. Хорошим практическим правилом является использование нагрузки с номинальной мощностью, по крайней мере, в 1,5 раза большей, чем номинальная мощность источника питания.

    Для импульсных и нерегулируемых источников питания :
    1) Найдите номинальное напряжение и минимальный ток каждого выхода.
    2) Используйте закон Ома: R = V / I для расчета каждой выходной нагрузки.

    Пример: У вас есть источник питания переменного / постоянного тока с тройным выходом , который имеет следующие характеристики:

    +5 В при 0,6 А (канал 1)
    +12 В при 0,2 А (Канал 2)
    -12 В при 0,1 А (Канал 3)
    Используя закон Ома, мы рассчитываем минимальную резистивную нагрузку для каждого канала:
    Канал 1: R = V / I = 5 В / 0,6 A = 8,3 Ом
    Канал 2: R = V / I = 12 В / 0,2 A = 60 Ом
    Канал 3: R = V / I = 12 В / 0.1A = 120 Ом

    Обратите внимание, что канал 3 рассчитан на -12 В, но это не учитывается как отрицательное значение в наших расчетах. Мы не можем применять отрицательную резистивную нагрузку. Еще раз, номинальная мощность нагрузки должна быть не менее чем в 1,5 раза больше номинальной мощности источника питания. Используйте формулу для мощности: мощность = напряжение x ток или P = VI.

    Если вы пытаетесь рассчитать минимальную нагрузку и знаете только номинальную мощность и напряжение вашего источника питания, вы можете использовать формулу P = V 2 / R, которая может стать R = V 2 /П.

    Если по какой-либо причине у вас есть только номинальные значения тока и мощности вашего источника питания, вы можете использовать P = I 2 R, которое можно изменить на R = P / I 2 .

    Как видите, расчет минимально необходимой нагрузки вашего источника питания — очень простой процесс. Просто найдите несколько оценок в таблице, и вы сможете мгновенно применить нагрузку правильного размера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *