Как найти ток зная мощность: Расчёт величины тока по мощности и напряжению

Содержание

Формула тока. Как найти ток. Вычисляем и определяем ток по формуле закона Ома.

Основополагающей формулой для нахождения силы тока является классический закон Ома, который гласит, что сила тока равна напряжение деленное на сопротивление. И эта основополагающая формула любого электрика и электроника, которая постоянно используется для быстрого вычисления силы тока той или иной цепи. Из любых двух известных величин закона Ома (это ток, напряжение и сопротивление) всегда можно найти третью. В случае нахождения напряжения мы перемножаем ток на сопротивление, ну а при вычислении тока или сопротивления всегда напряжение делим на ту величину, которая известная (сила тока или сопротивление).

Стоит сказать, что данная формула тока подходит как для переменного, так и для постоянного тока. Хотя для переменного имеются некоторые нюансы. А именно: это случаи, когда мы используем активную нагрузку (нагреватели, лампочки). Формула тока показывает зависимость напряжения, сопротивления, и собственно силы тока.

Поскольку немаловажной характеристикой, используемой в области электричества, является также электрическая мощность, то для нахождения силы тока применять можно и её. Электрическая мощность, это произведение силы тока на напряжение. И чтобы найти силу тока необходимо мощность поделить на известное напряжение. Например, нам известна мощность нагревательного элемента, которая равна 880 Вт. Мы также знаем напряжение, что будет подаваться на него, равное 220 В. Нам нужно найти силу тока, которая будет протекать по цепи питания данного нагревателя. Для этого мы просто 880 ватт делим на 220 вольт, что даст на силу тока в 4 ампера.

Теперь как можно вычислить по формуле тока (по закону Ома) этот самый ток зная напряжение и сопротивление. Итак, у нас всё то же напряжение 220 вольт, и есть тот же нагревательный элемент. Мы мультиметром, тестером измеряем сопротивление элемента (у нагревателя с мощностью 880 ватт и рассчитанного на напряжение 220 вольт оно будет 55 ом). И что бы найти силу тока мы напряжение 220 вольт делим на сопротивление нагревателя 55 ом, в итоге получаем всю ту же силу тока в 4 ампера.

Просто нужно хорошо запомнить эти две формулы тока (его нахождение через мощность и через сопротивление с известным напряжением). Тогда вы быстро и без труда в голове сможете вычислять как силу тока электрической цепи, так и любые другие электрические величины (напряжение, сопротивление, мощность).

 

Ну, а если вы больше практик, тогда просто берите в руки измерители и меряйте. Напомню, напряжение мы измеряем параллельным прикладыванием щупов тестера, мультиметра к контактам, на которых будет измерять величину разности потенциалов. Силу тока же мы меряем уже путем разрыва цепи, где нужно измерить силу тока, то есть разрываем электрическую цепь в начале (поближе к источнику питания) и между этим разрывом подсоединяем щупы нашего измерителя тока (амперметра). Не забывайте, что переменный ток должен соответствовать своему положению на переключателе тестера, а постоянный своему месту (иначе вы получите неверные значения измеряемого тока).

P.S. Для лучшего запоминания закона Ома вы просто держите в голове, что при делении напряжение всегда в верху, то есть если по закону Ома мы находим напряжение, то перемножаем ток на сопротивление, ну в двух других случаях (при нахождении сопротивления или тока) мы всегда напряжение делим на известную величину, получая вторую, которая ранее была неизвестна.

Как узнать ток зная мощность и напряжение

Особенности расчета мощности по току и напряжению

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание!

Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести

расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Как найти мощность тока — формулы с примерами расчетов

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:

S=UI

Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.

P=UIcosФ

Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.

Q=UIsinФ

Или выразить из этого выражения:

И отсюда вычислить искомую величину.

Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:

А зная Uлинейное:

1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.

Тогда по аналогии чтобы найти P активную:

Определить реактивную мощность можно:

На этом теоретические сведения заканчиваются и мы перейдём к практике.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Заключение

Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Также читают:

{SOURCE}

Как вычислить мощность тока — Морской флот

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой. Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).

Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Что такое мощность электрического тока

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:

S=UI

Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.

P=UIcosФ

Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.

Q=UIsinФ

Или выразить из этого выражения:

И отсюда вычислить искомую величину.

Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:

А зная Uлинейное:

1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.

Тогда по аналогии чтобы найти P активную:

Определить реактивную мощность можно:

На этом теоретические сведения заканчиваются и мы перейдём к практике.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Заключение

Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Также читают:

Как рассчитать максимальную силу переменного тока на входе

Как рассчитать максимальную силу переменного тока на входе
УП-21

Знать максимальный входной ток источника питания полезно при выборе требований к электросети, аварийного выключателя, кабеля питания переменного тока, разъемов и даже изолирующего трансформатора в плавучих блоках. Рассчитать максимальную силу входного тока довольно просто, зная несколько основных параметров и простых математических действий.

Номинальная мощность источника питания высокого напряжения
Для всех источников питания компании Spellman указана номинальная максимальная мощность в ваттах. Это первый нужный нам параметр; получить его можно из техпаспорта изделия. У большей части источников питания компании Spellman максимальная номинальная мощность указана в номере модели. Например, SL30P300/115 — источник питания напряжением 30 кВ с положительной полярностью и максимальной мощностью 300 Вт, работающий от входного напряжения переменного тока 115 В.

КПД источника питания
КПД источника питания — отношение мощности на входе к мощности на выходе. КПД обычно указывается в процентном виде или в виде десятичной дроби меньше 1, например, 80 % или 0,8. Чтобы узнать входную мощность, поделим максимальную выходную мощность на КПД:

300 Вт / 0,8 = 375 Вт

Коэффициент мощности
Коэффициент мощности — отношение реальной мощности к фиксируемой. Обычно он выражается в виде десятичной дроби меньше 1. Реальная мощность указывается в ваттах, а фиксируемая — в вольт-амперах (ВА). У однофазных импульсных источников питания без коррекции коэффициент мощности обычно довольно низок, например, 0,65. Импульсные источники питания без коррекции обладают более высоким коэффициентом мощности, например, 0,85. Блоки питания с активной коррекцией коэффициента мощности могут обладать очень высоким коэффициентом мощности, к примеру, 0,98. В приведенном выше примере используется источник питания без коррекции с питанием от однофазной линии, таким образом:

375 Вт / 0,65 = 577 ВА

Напряжение на входе
Нам необходимо знать входное напряжение переменного тока, для которого предназначен источник питания. В приведенном выше примере оно составляет 115 В. Это номинальное напряжение, в реальности оно указывается с допуском ±10 %. Чтобы предусмотреть наихудший случай с низким напряжением в сети, отнимем 10 %:

115 В – 10 % = 103,5 В

Максимальная сила переменного тока на входе
Взяв 577 ВА и разделив ее на 103,5 В, получаем:

577 ВА / 103,5 В = 5,57 А

Если напряжение на входе однофазное, наш ответ — 5,57 А.

Трехфазное входное напряжение
Источники питания с трехфазным напряжением на входе обладают более высоким коэффициент мощности, чем однофазные. Кроме того, по причине наличия трех фаз, питающих источник, фазовая сила тока будет меньшей. Чтобы узнать силу тока одной фазы, поделим рассчитанную нами силу тока на входе на √3 (1,73).

Рассчитаем данные для следующего примера: STR10N6/208. Из технического паспорта STR узнаем, что максимальная мощность — 6000 Вт, КПД 90 %, а коэффициент мощности 0,85. И хотя STR в силу своей конструкции будет работать с напряжением до 180 В переменного тока, в данном примере его питание будет поступать от трехфазной сети 208 В. Максимальную силу входного тока на одну фазу получаем следующим образом:

КПД источника питания:
6000 Вт / 0,9 = 6666 Вт

Коэффициент мощности:
6666 Вт / 0,85 = 7843 ВА

Напряжение на входе:
208 В – 10 % = 187 В

Максимальная сила переменного тока на входе:
7843 ВА / 187 В = 41,94 А (если бы сеть была однофазной)

Пересчет для трех фаз на входе:
41,94 А / √3 (1,73) = 24,21 А на фазу

Таким образом, у нас есть два уравнения, одно для однофазного и одно для трехфазного напряжения на входе:

Уравнение для максимальной силы однофазного входного тока
Входной ток = максимальная мощность/(КПД)(коэффициент мощности)(максимальное входное напряжение)

Уравнение для максимальной силы трехфазного входного тока
Входной ток = максимальная мощность/(КПД)(коэффициент мощности)(максимальное входное напряжение)(√3)

Данные расчеты входного тока предусматривают наихудший случай, исходя из того, что источник питания работает на максимальной мощности с низким напряжением в линии, а также с учетом КПД и коэффициента мощности.

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма.  / / Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Цепь постоянного тока (или, строго говоря, цепь без комплексного сопротивления)

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока.

P = мощность (Ватт)

U = напряжение (Вольт)

I = ток (Ампер)

R = сопротивление (Ом)

r = внутреннее сопротивление источнка ЭДС

ε = ЭДС источника

Тогда для всей цепи:

  • I=ε/(R +r) — закон Ома для всей цепи.

И еще ниже куча формулировок закона Ома для участка цепи :

Электрическое напряжение:

  • U = R* I — Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2

Электрическая мощность:

  • P= U* I
  • P= R* I2
  • P = U 2/ R

Электрический ток:

  • I = U / R
  • I = P/ E
  • I = (P / R)1/2

Электрическое сопротивление:

  • R = U / I
  • R = U 2/ P
  • R = P / I2

НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.

Цепь переменного синусоидального тока c частотой ω.

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.

Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети частотнонезависимы — данная формулировка применима ко всем гармоникам любого сигнала.

Закон Ома для цепей переменного тока:

где:

Естественно, применительно к цепям переменного тока можно говорить и об активной/реактивной мощности.

  • U = U0eiωt  напряжение или разность потенциалов,
  • I  сила тока,
  • Z = Reiφ  комплексное сопротивление (импеданс)
  • R = (Ra2+Rr2)1/2  полное сопротивление,
  • Rr = ωL — 1/ωC  реактивное сопротивление (разность индуктивного и емкостного),
  • Rа  активное (омическое) сопротивление, не зависящее от частоты,
  • φ = arctg Rr/Ra — сдвиг фаз между напряжением и током.
Дополнительная информация:
  1. Электростатика.
  2. Закон Ома.
  3. Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.
  4. Формулы. Электрическое сопротивление проводника при постоянном токе, зависимость сопротивления проводника от температуры, индуктивное и ёмкостное (реактивное) сопротивление, полное реактивное сопротивление, полное сопротивление цепи при переменном токе
  5. Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.



Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.
TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Расчет простых цепей постоянного тока

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.  

Пример 1

  Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r= 0,5 Ом. Сопротивления резисторов  R1 = 20 и R2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

 

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи. 

Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов. 

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. 

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. 

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.

Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2

  Общий ток цепи, содержащей два соединенных параллельно резистора R1=70 Ом и R2=90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Два последовательно соединенных резистора ничто иное, как делитель тока. Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов. 

Токи в резисторах 

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если у вас возникли затруднения, прочтите статью законы Кирхгофа.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала рассчитать сопротивление цепи 

А затем напряжение 

Зная напряжения, найдем токи, протекающие через резисторы 

Как видите, токи получились теми же.

Пример 3

  В электрической цепи, изображенной на схеме R1=50 Ом, R2=180 Ом, R3=220 Ом. Найти мощность, выделяемую на резисторе R1, ток через резистор R2, напряжение на резисторе R3, если известно, что напряжение на зажимах цепи 100 В.

 

Чтобы рассчитать мощность постоянного тока, выделяемую на резисторе R1, необходимо определить ток I1, который является общим для всей цепи. Зная напряжение на зажимах и эквивалентное сопротивление цепи, можно его найти.

Эквивалентное сопротивление и ток в цепи 

Отсюда мощность, выделяемая на R1 

Ток I2 определим с помощью формулы делителя тока, учитывая, что ток I1 для этого делителя является общим 

Так как, напряжение при параллельном соединении резисторов одинаковое, найдем U3, как напряжение на резисторе R2 

Таким образом производится расчет простых цепей постоянного тока.

  • Просмотров: 73318
  • Как измерять силу электрического тока амперметром

    Для измерения силы тока применяется измерительный прибор, который называется Амперметр. Силу тока приходится измерять гораздо реже, чем напряжение или сопротивление, но, тем не менее, если нужно определить потребляемую мощность электроприбором, то без зная величины потребляемого ним тока, мощность не определить.

    Ток, как и напряжение, бывает постоянным и переменным и для измерения их величины требуются разные измерительные приборы. Обозначается ток буквой I, а к числу, чтобы было ясно, что это величина тока, приписывается буква А. Например, I=5 A обозначает, что сила тока в измеренной цепи составляет 5 Ампер.

    На измерительных приборах для измерения переменного тока перед буквой А ставится знак «~«, а предназначенных для измерения постоянного тока ставится ««. Например, –А означает, что прибор предназначен для измерения силы постоянного тока.

    О том, что такое ток и законы его протекания в популярной форме Вы можете прочитать в статье сайта «Закон силы тока». Перед проведением измерений настоятельно рекомендую ознакомиться с этой небольшой статьей. На фотографии Амперметр, рассчитанный на измерение силы постоянного тока величиной до 3 Ампер.

    Схема измерения силы тока Амперметром

    Согласно закону, ток по проводам течет в любой точке замкнутой цепи одинаковой величины. Следовательно, чтобы измерять величину тока, нужно прибор подключить, разорвав цепь в любом удобном месте. Надо отметить, что при измерении величины тока не имеет значение, какое напряжение приложено к электрической цепи. Источником тока может быть и батарейка на 1,5 В, автомобильный аккумулятор на 12 В или бытовая электросеть 220 В или 380 В.

    На схеме измерения также видно, как обозначается амперметр на электрических схемах. Это прописная буква А обведенная окружностью.

    Приступая к измерению силы тока в цепи необходимо, как и при любых других измерениях, подготовить прибор, то есть установить переключатели в положение измерения тока с учетом рода его, постоянного или переменного. Если не известна ожидаемая величина тока, то переключатель устанавливается в положение измерения тока максимальной величины.

    Как измерять потребляемый ток электроприбором

    Для удобства и безопасности работ по измерению потребляемого тока электроприборами необходимо сделать специальный удлинитель с двумя розетками. По внешнему виду самодельный удлинитель ничем не отличается от обыкновенного удлинителя.

    Но если снять крышки с розеток, то не трудно заметить, что их выводы соединены не параллельно, как во всех удлинителях, а последовательно.

    Как видно на фотографии сетевое напряжение подается на нижние клеммы розеток, а верхние выводы соединены между собой перемычкой из провода с желтой изоляцией.

    Все подготовлено для измерения. Вставляете в любую из розеток вилку электроприбора, а в другую розетку, щупы амперметра. Перед измерениями, необходимо переключатели прибора установить в соответствии с видом тока (переменный или постоянный) и на максимальный предел измерения.

    Как видно по показаниям амперметра, потребляемый ток прибора составил 0,25 А. Если шкала прибора не позволяет снимать прямой отсчет, как в моем случае, то необходимо выполнить расчет результатов, что очень неудобно. Так как выбран предел измерения амперметра 0,5 А, то чтобы узнать цену деления, нужно 0,5 А разделить на число делений на шкале. Для данного амперметра получается 0,5/100=0,005 А. Стрелка отклонилась на 50 делений. Значит нужно теперь 0,005×50=0,25 А.

    Как видите, со стрелочных приборов снимать показания величины тока неудобно и можно легко допустить ошибку. Гораздо удобнее пользоваться цифровыми приборами, например мультиметром M890G.

    На фотографии представлен универсальный мультиметр, включенный в режим измерения переменного тока на предел 10 А. Измеренный ток, потребляемый электроприбором составил 5,1 А при напряжении питания 220 В. Следовательно прибор потребляет мощность 1122 Вт.

    У мультиметра предусмотрено два сектора для измерения тока, обозначенные буквами А– для постоянного тока и А~ для измерения переменного. Поэтому перед началом измерений нужно определить вид тока, оценить его величину и установить указатель переключателя в соответствующее положение.

    Розетка мультиметра с надписью COM является общей для всех видов измерений. Розетки, обозначенные mA и 10А предназначены только для подключения щупа при измерении силы тока. При измеряемом токе менее 200 мA штекер щупа вставляется в розетку mA, а при токе величиной до 10 А в розетку 10А.

    Внимание, если производить измерение тока, многократно превышающего 200 мА при нахождении вилки щупа в розетке mA, то мультиметр можно вывести из строя.

    Если величина измеряемого тока не известна, то измерения нужно начинать, установив предел измерения 10 А. Если ток будет менее 200 мА, то тогда уже переключить прибор в соответствующее положение. Переключение режимов измерения мультиметра допустимо делать только обесточив измеряемую цепь.

    Расчет мощности электроприбора по потребляемому току

    Зная величину тока, можно определить потребляемую мощность любого потребителя электрической энергии, будь то лампочка в автомобиле или кондиционер в квартире. Достаточно воспользоваться простым законом физики, который установили одновременно два ученых физика, независимо друг от друга. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля – Ленца.

    где
    P – мощность, измеряется в ваттах и обозначается Вт;
    U – напряжение, измеряется в вольтах и обозначается буквой В;
    I – сила тока, измеряется в амперах и обозначается буквой А.

    Рассмотрим, как посчитать потребляемую мощность на примере:
    Вы измеряли ток потребления лампочки фары автомобиля, который составил 5 А, напряжение бортовой сети составляет 12 В. Значит, чтобы найти потребляемую мощность лампочкой нужно напряжение умножить на ток. P=12 В×5 А=60 Вт. Потребляемая лампочкой мощность составила 60 Вт.

    Вам надо определить потребляемую мощность стиральной машины. Вы измеряли потребляемый ток, который составил 10 А, следовательно, мощность составит: 220 В×10 А=2,2 кВт. Как видите все очень просто.

    Калькулятор

    Вт | Амперы, Ом, Ватты в Ватты

    С помощью нашего ваттного калькулятора вы лучше поймете, что такое закон Ватта и какова единица измерения электрической мощности. Хотите узнать, как найти ватт? А что насчет того, что соединяет вольт, ампер, ватт и ом? Что ж, для этого нам нужно погрузиться в суть уравнения мощности!

    Если вы хотите знать, как тип тока влияет на расчет ватт в цепи, посмотрите наш калькулятор ватт в ампер.

    Как рассчитать ватт? — Уравнение Ватта

    Наш калькулятор основан на двух законах, описывающих простые электрические цепи.Один из них — закон Ватта — гласит, что:

    Мощность = Напряжение * Ток — в символах: P = В * I .

    Это уравнение мощности, как и силовой агрегат, названо в честь Джеймса Ватта — шотландского инженера. Один ватт — это мощность, при которой работа, выполняемая за одну секунду, равна одному джоулю:

    1Вт = 1Дж / 1с

    В электрических цепях один ватт определяется как скорость работы, когда ток в один ампер протекает через проводник, имеющий разность электрических потенциалов (напряжение) в один вольт. :

    1 Вт = 1 В * 1 А

    Так что же такое мощность? Мощность в электрической цепи — это скорость передачи электрической энергии в единицу времени.

    Закон Ома: вольты, амперы и омы

    В нашем калькуляторе ватт используется вторая формула — закон Ома. В нем говорится, что:

    Напряжение = ток * сопротивление или В = I * R

    Что означают эти имена?

    Электрический ток — это мера количества заряда (электронов), проходящего через любую точку провода за единицу времени. Его единица СИ — ампер [А].

    Сопротивление описывает силу данного провода противодействовать потоку электронов.Единица измерения сопротивления — Ом [Ом].

    Напряжение — это разность электрических потенциалов между двумя точками провода. Единица измерения напряжения в системе СИ — вольт [В].

    Мощность, напряжение, сопротивление, ток

    С помощью уравнений Ома и Ватта вы можете вычислить четыре переменные — мощность, напряжение, сопротивление и ток. Если вам известны значения двух из этих переменных, вы можете преобразовать приведенные выше уравнения в соответствии с вашими потребностями. Ниже мы перечисляем все эти преобразования:

    1. Сопротивление:
    • R = V / I
    • R = V 2 / P
    • R = P / I 2
    1. Текущий:
    • I = V / R
    • I = P / V
    • I = √ (P / R)
    1. Напряжение:
    • В = I * R
    • В = P / I
    • В = √ (P * R)
    1. Мощность:
    • P = V * I
    • P = V 2 / R
    • P = I 2 * R

    Продолжайте читать, чтобы увидеть пару примеров, где мы узнаем, как находить ватты и рассчитывать амперы из ватт и вольт!

    Примеры преобразования между вольт, ампер, ватт и ом

    Чтобы использовать наш калькулятор ватт, все, что вам нужно сделать, это ввести два числа, а все остальные поля будут заполнены самостоятельно.Но, если вы хотите научиться рассчитывать эти вещи самостоятельно, вот несколько примеров, которые могут оказаться вам полезными:

    Рассмотрим лампочку мощностью 60 Вт с электрическим потенциалом 120 В. Как рассчитать ампер из ватт и вольт? Найдите правильную формулу и введите числа в правильные места:

    I = P / V = ​​60 Вт / 120 В = 0,5 А

    Вашей лампочке требуется ток 0,5 ампер.

    Рассмотрим другой пример. Резистор имеет напряжение 4 вольта и сопротивление 8 Ом.Как найти ватты? Вам нужно объединить закон Ома и Ватта. Тогда вы получите:

    P = V 2 / R = (4V) 2 / 8Ω = 2 Вт

    Хотите немного испытать себя? Воспользуйтесь калькулятором коэффициента мощности, чтобы узнать больше об уравнении мощности и компонентах мощности: активной мощности, реактивной мощности и полной мощности!

    Как рассчитать максимальный входной переменный ток

    Как рассчитать максимальный входной переменный ток.
    Ан-21

    Знание максимального входного тока источника питания может быть полезно при выборе требований к электроснабжению, выборе автоматического выключателя, выбора входного кабеля переменного тока и разъема и даже при выборе изолирующего трансформатора для плавающих приложений. Вычислить максимальный входной ток довольно просто, зная несколько основных параметров и некоторую простую математику.

    Номинальная мощность блока питания высокого напряжения
    Все блоки питания Spellman имеют заявленную максимальную номинальную мощность в ваттах.Это первый параметр, который нам понадобится, и его можно найти в паспорте продукта. У большинства блоков питания Spellman максимальная мощность указана прямо в номере модели. Как и в этом примере, SL30P300 / 115 представляет собой блок 30 кВ с положительной полярностью, который может обеспечить максимум 300 Вт; работает от входной линии 115Vac.

    Эффективность блока питания
    Эффективность блока питания — это отношение входной мощности к выходной мощности. Эффективность обычно указывается в процентах или в виде десятичной дроби меньше 1, например 80% или 0.8. Чтобы вычислить входную мощность, мы берем заявленную максимальную выходную мощность и делим ее на эффективность:

    300 Вт / 0,8 = 375 Вт

    Коэффициент мощности
    Коэффициент мощности — это отношение реальной мощности к используемой полной мощности. . Обычно она выражается десятичным числом меньше 1. Реальная мощность выражается в ваттах, а полная мощность выражается в ВА (вольт-амперах). Однофазные импульсные источники питания без коррекции обычно имеют довольно низкий коэффициент мощности, например 0.65. Трехфазные импульсные источники питания без коррекции имеют более высокий коэффициент мощности, например 0,85. Блоки со схемой активной коррекции коэффициента мощности могут иметь очень хороший коэффициент мощности, например 0,98. В нашем примере выше источник питания представляет собой неисправный блок, питаемый от однофазной сети, поэтому:

    375 Вт / 0,65 = 577 ВА

    Напряжение входной линии
    Нам необходимо знать входное напряжение переменного тока, от которого устройство предназначено для питания . В приведенном выше примере входное напряжение переменного тока составляет 115 В переменного тока. Это номинальное напряжение, в действительности входное напряжение указано как ± 10%.Нам нужно вычесть 10%, чтобы учесть наихудший случай, состояние низкой линии:

    115Vac — 10% = 103,5Vac

    Максимальный входной переменный ток
    Если мы возьмем 577 VA и разделим его на 103,5Vac, получим:

    577 ВА / 103,5 В переменного тока = 5,57 ампер

    Если наше входное напряжение переменного тока однофазное, то у нас есть ответ — 5,57 ампер.

    Трехфазное входное напряжение
    Блоки с трехфазным входным напряжением питаются от трех фаз, поэтому они имеют лучший коэффициент мощности, чем однофазные блоки.Также за счет наличия трех фаз, питающих агрегат, фазные токи будут меньше. Чтобы получить входной ток на каждую фазу, мы разделим наш расчет входного тока на √3 (1,73).

    Рассчитаем этот пример: STR10N6 / 208. Из таблицы данных STR мы узнаем, что максимальная мощность составляет 6000 Вт, КПД составляет 90%, а коэффициент мощности составляет 0,85. Несмотря на то, что STR по дизайну будет работать с напряжением до 180 В переменного тока, в этом примере он будет питаться от трехфазной сети 208 В переменного тока. Мы получаем максимальный входной ток на фазу следующим образом:

    КПД источника питания
    6000 Вт /.9 = 6666 Вт

    Коэффициент мощности
    6666 Вт / 0,85 = 7843 ВА

    Напряжение входной линии
    208 В переменного тока — 10% = 187 В переменного тока

    Максимальный входной ток переменного тока
    7843 ВА / 187 В переменного тока = 41,94 ампер (если он был однофазным)

    Поправка для трехфазного входа
    41,94 ампера / √3 (1,73) = 24,21 ампера на фазу

    Итак, у нас есть два уравнения, одно для однофазных входов и одно для трехфазных входов:

    Однофазное уравнение максимального входного тока
    Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение)

    Уравнение трехфазного максимального входного тока
    Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение) ( √3)

    Эти расчеты входного тока предназначены для наихудшего случая: предполагается, что агрегат работает на максимальной мощности, работает при низком уровне напряжения в сети и с учетом КПД и коэффициента мощности.

    Щелкните здесь, чтобы загрузить pdf.

    19,4 Электроэнергия | Texas Gateway

    Цели обучения

    К концу этого раздела вы сможете сделать следующее:

    • Определить электрическую мощность и описать уравнение электрической мощности
    • Расчет электрической мощности в цепях резисторов в последовательном, параллельном и сложном расположении
    Основные термины раздела
    электроэнергия

    Власть ассоциируется у многих с электричеством.Каждый день мы используем электроэнергию для работы наших современных приборов. Линии электропередачи являются наглядным примером того, как электроэнергия обеспечивает электроэнергию. Мы также используем электроэнергию для запуска автомобилей, работы компьютеров или освещения дома. Мощность — это скорость передачи энергии любого типа; электрическая мощность — это скорость, с которой электрическая энергия передается в цепи. В этом разделе мы узнаем не только, что это означает, но и какие факторы определяют электрическую мощность.

    Для начала представим себе лампочки, которые часто характеризуются номинальной мощностью в ваттах.Давайте сравним лампочку мощностью 25 Вт с лампой мощностью 60 Вт (см. Рисунок 19.23). Хотя обе работают при одинаковом напряжении, лампа мощностью 60 Вт излучает больше света, чем лампа мощностью 25 Вт. Это говорит нам о том, что выходную мощность электрической цепи определяет нечто иное, чем напряжение.

    Лампы накаливания, такие как две, показанные на рисунке 19.23, по сути являются резисторами, которые нагреваются, когда через них протекает ток, и становятся настолько горячими, что излучают видимый и невидимый свет. Таким образом, две лампочки на фото можно рассматривать как два разных резистора.В простой цепи, такой как электрическая лампочка с приложенным к ней напряжением, сопротивление определяет ток по закону Ома, поэтому мы можем видеть, что ток, а также напряжение должны определять мощность.

    Рисунок 19.23 Слева лампочка мощностью 25 Вт, а справа лампочка мощностью 60 Вт. Почему их выходная мощность различается, несмотря на то, что они работают при одинаковом напряжении?

    Формулу мощности можно найти путем анализа размеров. Рассмотрим единицы мощности. В системе СИ мощность указывается в ваттах (Вт), которые представляют собой энергию в единицу времени, или Дж / с.

    Напомним, что напряжение — это потенциальная энергия на единицу заряда, что означает, что напряжение имеет единицы Дж / Кл.

    Мы можем переписать это уравнение как J = V × CJ = V × C и подставить его в уравнение для ватт, чтобы получить

    W = Js = V × Cs = V × Cs.W = Js = V × Cs = V × Cs.

    Но кулон в секунду (Кл / с) — это электрический ток, который мы можем видеть из определения электрического тока, I = ΔQΔtI = ΔQΔt, где ΔΔ Q — заряд в кулонах, а ΔΔ t — время в секундах. Таким образом, приведенное выше уравнение говорит нам, что электрическая мощность равна напряжению, умноженному на ток, или

    Это уравнение дает электрическую мощность, потребляемую цепью с падением напряжения В и током I .

    Например, рассмотрим схему на рисунке 19.24. По закону Ома ток, протекающий по цепи, равен

    19,49I = VR = 12 В 100 Ом = 0,12 AI = VR = 12 В 100 Ом = 0,12 А.

    Таким образом, мощность, потребляемая цепью, составляет

    19,50P = VI. = (12 В) (0,12 А) = 1,4 WP = VI = (12 В) (0,12 А) = 1,4 Вт.

    Куда уходит эта мощность? В этой схеме мощность в основном идет на нагрев резистора в этой цепи.

    Рисунок 19.24 Простая схема, потребляющая электроэнергию.

    При вычислении мощности в цепи, показанной на рисунке 19.24, мы использовали сопротивление и закон Ома, чтобы найти ток.Закон Ома дает ток: I = V / RI = V / R, который мы можем вставить в уравнение для электроэнергии, чтобы получить

    P = IV = (VR) V = V2R.P = IV = (VR) V = V2R.

    Это дает мощность с точки зрения только напряжения и сопротивления.

    Мы также можем использовать закон Ома, чтобы исключить напряжение из уравнения для электрической мощности и получить выражение для мощности, выраженное только через ток и сопротивление. Если мы запишем закон Ома как V = IRV = IR и используя это, чтобы исключить V в уравнении P = IVP = IV, мы получим

    P = IV = I (IR) = I2R.P = IV = I (IR) = I2R.

    Это дает мощность с точки зрения только тока и сопротивления.

    Таким образом, комбинируя закон Ома с уравнением P = IVP = IV для электроэнергии, мы получаем еще два выражения для мощности: одно через напряжение и сопротивление, а другое через ток и сопротивление. Обратите внимание, что в выражения для электрической мощности входят только сопротивление (не емкость или что-либо еще), ток и напряжение. Это означает, что физической характеристикой схемы, определяющей, сколько мощности она рассеивает, является ее сопротивление.Любые конденсаторы в цепи не рассеивают электроэнергию — напротив, конденсаторы либо накапливают электрическую энергию, либо отдают ее обратно в цепь.

    Чтобы прояснить связь между напряжением, сопротивлением, током и мощностью, рассмотрим рисунок 19.25, на котором показано колесо формулы . Количества в центральной четверти круга равны количествам в соответствующей внешней четверти круга. Например, чтобы выразить потенциал V через мощность и ток, мы видим из колеса формул, что V = P / IV = P / I.

    Рисунок 19.25 Колесо формул показывает, как связаны между собой вольт, сопротивление, ток и мощность. Количества во внутренней четверти окружности равны количеству в соответствующей внешней четверти окружности.

    Рабочий пример

    Найдите сопротивление лампочки

    Типичная старая лампа накаливания имела мощность 60 Вт. Если предположить, что к лампочке приложено 120 В, каков ток через лампочку?

    СТРАТЕГИЯ

    Нам даны напряжение и выходная мощность простой схемы, содержащей лампочку, поэтому мы можем использовать уравнение P = IVP = IV, чтобы найти ток I , который течет через лампочку.

    Решение

    Решение P = IVP = IV для тока и вставка данных значений для напряжения и мощности дает

    19,51 P = IVI = PV = 60 Вт 120 V = 0,50 А. P = IVI = PV = 60 Вт 120 В = 0,50 А.

    Таким образом, при подаче напряжения 120 В через лампочку проходит половина ампера.

    Обсуждение

    Это значительное течение. Напомним, что в быту используется переменный, а не постоянный ток, поэтому 120 В, подаваемое от бытовых розеток, — это переменная, а не постоянная мощность. Фактически, 120 В — это усредненная по времени мощность, обеспечиваемая такими розетками.Таким образом, средний ток, протекающий через лампочку за период времени, превышающий несколько секунд, составляет 0,50 А.

    Рабочий пример

    Подогреватели ботинок

    Чтобы согреть ботинки в холодные дни, вы решаете вшить цепь с некоторыми резисторами в стельку ботинок. Вам нужно 10 Вт тепла от резисторов в каждой стельке, и вы хотите, чтобы они работали от двух 9-вольтовых батарей (соединенных последовательно). Какое общее сопротивление вы должны приложить к каждой стельке?

    СТРАТЕГИЯ

    Нам известны требуемая мощность и напряжение (18 В, потому что у нас есть две батареи 9 В, соединенные последовательно), поэтому мы можем использовать уравнение P = V2 / RP = V2 / R, чтобы найти необходимое сопротивление.

    Решение

    Решая P = V2 / RP = V2 / R для сопротивления и вставляя заданные напряжение и мощность, получаем

    19,52P = V2RR = V2P = (18 В) 210 Вт = 32 Ом. P = V2RR = V2P = (18 В) 210 Вт = 32 Ом.

    Таким образом, общее сопротивление в каждой стельке должно быть 32 Ом.

    Обсуждение

    Давайте посмотрим, сколько тока пройдет через эту цепь. У нас есть 18 В, приложенное к сопротивлению 32 Ом, поэтому закон Ома дает

    19,53 I = VR = 18 В 32 Ом = 0,56 А. I = VR = 18 В 32 Ом = 0,56 А.

    На всех батареях есть этикетки, на которых указано, сколько заряда они могут доставить (в единицах силы тока, умноженного на время).Типичная щелочная батарея 9 В может обеспечить заряд 565 мА · ч · мА · ч. (так что две батареи 9 В обеспечивают 1130 мА · ч · мА · ч), поэтому эта система обогрева проработает в течение

    19,54t = 1130 × 10−3 A⋅h0,56 A = 2,0 h.t = 1130 × 10−3 A⋅h0,56 A = 2,0 час.

    Рабочий пример

    Питание через ответвление цепи

    Каждый резистор в приведенной ниже схеме имеет сопротивление 30 Ом. Какая мощность рассеивается средней ветвью схемы?

    СТРАТЕГИЯ

    Средняя ветвь схемы содержит последовательно включенные резисторы R3 и R5R3 и R5.Напряжение на этой ветви составляет 12 В. Сначала мы найдем эквивалентное сопротивление в этой ветви, а затем используем P = V2 / RP = V2 / R, чтобы найти мощность, рассеиваемую в ветви.

    Решение

    Эквивалентное сопротивление: R среднее = R3 + R5 = 30 Ом + 30 Ом = 60 Ом R среднее = R3 + R5 = 30 Ом + 30 Ом = 60 Ом. Мощность, рассеиваемая средней ветвью схемы, составляет

    . 19,55P средний = V2R средний = (12 В) 260 Ом = 2,4 Вт. Средний = V2R средний = (12 В) 260 Ом = 2,4 Вт.

    Обсуждение

    Давайте посмотрим, сохраняется ли энергия в этой цепи, сравнив мощность, рассеиваемую в цепи, с мощностью, обеспечиваемой батареей.Во-первых, эквивалентное сопротивление левой ветви равно

    . 19,56 Влево = 11 / R1 + 1 / R2 + R4 = 11/30 Ом + 1/30 Ом + 30 Ом = 45 Ом. Влево = 11 / R1 + 1 / R2 + R4 = 11/30 Ом + 1/30 Ом +30 Ом = 45 Ом.

    Мощность через левую ветвь

    19,57, слева = V2R, слева = (12 В) 245 Ом = 3,2 Вт, слева = V2R, слева = (12 В) 245 Ом = 3,2 Вт.

    Правая ветвь содержит только R6R6, поэтому эквивалентное сопротивление Rright = R6 = 30 ΩRright = R6 = 30 Ω. Мощность через правую ветку

    19,58 Правый = V2 Правый = (12 В) 230 Ом = 4,8 Вт. Правый = V2 Правый = (12 В) 230 Ом = 4,8 Вт.

    Общая мощность, рассеиваемая схемой, представляет собой сумму мощностей, рассеиваемых в каждой ветви.

    19,59P = складка + середина + прядь = 2,4 Вт + 3,2 Вт + 4,8 Вт = 10,4 WP = складка + середина + прядь = 2,4 Вт + 3,2 Вт + 4,8 Вт = 10,4 Вт

    Мощность, обеспечиваемая аккумулятором, составляет

    .

    , где I — полный ток, протекающий через батарею. Поэтому мы должны сложить токи, проходящие через каждую ветвь, чтобы получить I . Ветви дают токи

    19,61 слева = VR слева = 12 В 45 Ом = 0.2667 AIсредний = VR средний = 12 В 60 Ом = 0.20 AIright = VRright = 12 В 30 Ом = 0,40 A. Левый = VR Левый = 12 В 45 Ом = 0,2667 AI Средний = VR средний = 12 В 60 Ом = 0,20 AIright = VRright = 12 В 30 Ом = 0,40 А.

    Суммарный ток

    19,62 I = слева + Imiddle + I right = 0,2667 A + 0,20 A + 0,40 A = 0,87 A. I = I слева + Imiddle + I right = 0,2667 A + 0,20 A + 0,40 A = 0,87 A.

    , а мощность, обеспечиваемая аккумулятором, составляет

    19,63P = IV = (0,87 A) (12 В) = 10,4 Вт. P = IV = (0,87 A) (12 В) = 10,4 Вт.

    Это та же мощность, которая рассеивается на резисторах схемы, что показывает, что в этой цепи сохраняется энергия.{2}} {\ text {9,8}} \\ & = \ текст {3,67} \ текст {Ω} \ end {выровнять *}

    Теперь мы можем найти неизвестное сопротивление, сначала вычислив эквивалентное параллельное сопротивление:

    \ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\ & = \ frac {1} {1} + \ frac {1} {5} + \ frac {1} {3} \\ & = \ frac {23} {15} \\ R_ {p} & = \ text {0,65} \ text {Ω} \ end {выровнять *} \ begin {align *} R_ {s} & = R_ {4} + R_ {p} \\ R_ {4} & = R_ {s} — R_ {p} \\ & = \ text {3,67} — \ text {0,65} \\ & = \ текст {3,02} \ текст {Ω} \ end {выровнять *}

    Теперь мы можем рассчитать общий ток:

    \ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {6} {\ text {3,67}} \\ & = \ текст {1,63} \ текст {А} \ end {выровнять *}

    Это ток в последовательном резисторе и во всем параллельном соединении.{2} (\ text {3,02}) \\ & = \ текст {0,89} \ текст {W} \ end {выровнять *}

    Затем мы находим напряжение на этих резисторах и используем его, чтобы найти напряжение на параллельной комбинации:

    \ begin {align *} V & = IR \\ & = (\ текст {1,63}) (\ текст {3,02}) \\ & = \ текст {4,92} \ текст {V} \ end {выровнять *} \ begin {align *} V_ {T} & = V_ {1} + V_ {p} \\ V_ {p} & = V_ {T} — V_ {1} \\ & = \ text {6} — \ text {4,92} \\ & = \ текст {1,08} \ текст {V} \ end {выровнять *}

    Это напряжение на каждом из параллельных резисторов.{2}} {\ text {3}} \\ & = \ текст {3,5} \ текст {W} \ end {выровнять *}

    Electric Power — learn.sparkfun.com

    Добавлено в избранное Любимый 49

    С большой силой …

    Почему нам важна власть? Мощность — это измерение передачи энергии во времени, а энергия стоит денег. Батареи не бесплатны, и они тоже не выходят из электрической розетки. Итак, мощность измеряет, насколько быстро из вашего кошелька уходят гроши!

    Также энергия есть…энергия. Он бывает во многих потенциально вредных формах — тепловом, радиационном, звуковом, ядерном и т. Д. — и чем больше мощность, тем больше энергии. Итак, важно иметь представление о том, с какой мощностью вы работаете, играя с электроникой. К счастью, когда вы играете с Arduinos, зажигаете светодиоды и вращаете маленькие моторы, потеря информации о том, сколько энергии вы потребляете, означает лишь выжигание резистора или плавление микросхемы. Тем не менее совет дяди Бена применим не только к супергероям.

    рассматривается в этом учебном пособии

    • Определение мощности
    • Примеры передачи электроэнергии
    • Вт, единица мощности в системе СИ
    • Расчет мощности с использованием напряжения, тока и сопротивления
    • Максимальная номинальная мощность

    Рекомендуемая литература

    Power — одно из наиболее фундаментальных понятий в электронике.Но перед тем, как узнать о мощности, возможно, вам стоит сначала прочитать несколько других руководств. Если вы не знакомы с некоторыми из этих тем, сначала подумайте о том, чтобы проверить эти учебники:

    Что такое электроэнергия?

    Есть много типов силы — физическая, социальная, супер, блокировка запаха, любовь — но в этом уроке мы сосредоточимся на электроэнергии. Так что же такое электроэнергия?

    В общих физических терминах, мощность определяется как скорость , с которой энергия передается (или преобразуется) .

    Итак, во-первых, что такое энергия и как она передается? Сложно сказать просто, но энергия — это в основном способность чего-то, от до перемещать что-то еще. Есть много форм энергии: механическая, электрическая, химическая, электромагнитная, тепловая и многие другие.

    Энергия никогда не может быть создана или уничтожена, ее можно только передать в другую форму. Многое из того, что мы делаем в электронике, — это преобразование различных форм энергии в электрическую энергию и обратно.Освещение светодиодами превращает электрическую энергию в электромагнитную. Прядильные двигатели превращают электрическую энергию в механическую. Жужжание зуммеров создает звуковую энергию. Питание цепи от щелочной батареи 9 В превращает химическую энергию в электрическую. Все это формы передачи энергии .

    9026 Химический Ветер2 Мельница
    Преобразованный тип энергии Преобразованный
    Механический Электродвигатель
    Электромагнитный Светодиод
    Тепловой Резистор

    Пример электрических компонентов, передающих электрическую энергию в другую форму.

    В частности, электрическая энергия начинается как электрическая потенциальная энергия — то, что мы с любовью называем напряжением. Когда электроны проходят через эту потенциальную энергию, она превращается в электрическую. В большинстве полезных цепей эта электрическая энергия преобразуется в другую форму энергии. Электрическая мощность измеряется путем объединения того, сколько электроэнергии передается, и того, как быстро происходит эта передача.

    Производители и потребители

    Каждый компонент в цепи потребляет или производит электроэнергии.Потребитель преобразует электрическую энергию в другую форму. Например, когда загорается светодиод, электрическая энергия преобразуется в электромагнитную. В этом случае лампочка потребляет энергии. Электроэнергия — это произведенная , когда энергия передается в электрическую из какой-либо другой формы. Батарея, подающая питание на схему, является примером источника питания .

    Мощность

    Энергия измеряется в джоулях (Дж).Поскольку мощность — это мера энергии за установленный промежуток времени, мы можем измерить ее в джоулей в секунду . Единица СИ для джоулей в секунду — Вт , сокращенно Вт .

    Очень часто перед словом «ватт» стоит один из стандартных префиксов SI: микроватты (мкВт), миливатты (мВт), киловатты (кВт), мегаватты (МВт) и гигаватты (ГВт) являются обычными в зависимости от ситуация.

    9026 9026 мельница
    Имя префикса Аббревиатура префикса Вес
    Nanowatt nW 10 -9
    Microwatt µ602 10 -3
    Ватт Вт 10 0
    Киловатт кВт 10 3
    Мегаватт
    ГВт ГВт 10 9
    Микроконтроллеры

    , такие как Arduino, обычно работают в диапазоне мкВт или мВт.Портативные и настольные компьютеры работают в стандартном диапазоне мощности. Энергопотребление дома обычно составляет киловатт. Большие стадионы могут работать в мегаваттном масштабе. И гигаватты вступают в игру для крупных электростанций и машин времени.

    Расчетная мощность

    Электроэнергия — это скорость передачи энергии. Он измеряется в джоулях в секунду (Дж / с) — ватт (Вт). Учитывая несколько известных нам основных терминов, связанных с электричеством, как мы можем рассчитать мощность в цепи? Итак, у нас есть очень стандартное измерение, включающее потенциальную энергию — вольты (В), — которые определяются в джоулях на единицу заряда (кулон) (Дж / Кл).Ток, еще один из наших любимых терминов, связанных с электричеством, измеряет поток заряда во времени в амперах (А) — кулонах в секунду (Кл / с). Соедините их вместе и что мы получим ?! Мощность!

    Чтобы рассчитать мощность любого конкретного компонента в цепи, умножьте падение напряжения на нем на ток, протекающий через него.

    Например,

    Ниже представлена ​​простая (хотя и не полностью функциональная) схема: батарея 9 В, подключенная через 10 Ом; резистор.

    Как рассчитать мощность на резисторе? Сначала мы должны найти ток, проходящий через него. Достаточно просто … Закон Ома!

    Хорошо, 900 мА (0,9 А) проходит через резистор и 9 В. Какая же тогда мощность подается на резистор?

    Резистор преобразует электрическую энергию в тепло. Таким образом, эта схема каждую секунду преобразует 8,1 джоулей электрической энергии в тепло.

    Расчет мощности в резистивных цепях

    Когда дело доходит до расчета мощности в чисто резистивной цепи, знать два из трех значений (напряжение, ток и / или сопротивление) — это все, что вам действительно нужно.

    Подставляя закон Ома (V = IR или I = V / R) в наше традиционное уравнение мощности, мы можем создать два новых уравнения. Первый, чисто по напряжению и сопротивлению:

    Итак, в нашем предыдущем примере 9V 2 /10 & ohm; (V 2 / R) составляет 8,1 Вт, и нам никогда не нужно рассчитывать ток, протекающий через резистор.

    Второе уравнение мощности можно составить исключительно с точки зрения тока и сопротивления:


    Зачем нам нужна мощность, упавшая на резистор? Или любой другой компонент в этом отношении.Помните, что мощность — это передача энергии от одного типа к другому. Когда эта электрическая энергия, идущая от источника питания, попадает на резистор, энергия превращается в тепло. Возможно, больше тепла, чем может выдержать резистор. Это приводит нас к … номинальной мощности.

    Номинальная мощность

    Все электронные компоненты передают энергию от одного типа к другому. Требуется некоторая передача энергии: светодиоды излучают свет, моторы вращаются, аккумуляторы заряжаются.Другая передача энергии нежелательна, но также неизбежна. Эти нежелательные передачи энергии составляют потери мощности , которые обычно проявляются в виде тепла. Слишком большие потери мощности — слишком большой нагрев компонента — может стать очень нежелательным.

    Даже когда передача энергии является основной целью компонента, все равно будут потери в другие формы энергии. Например, светодиоды и двигатели по-прежнему будут выделять тепло как побочный продукт при передаче другой энергии.

    Большинство компонентов рассчитаны на максимальную рассеиваемую мощность, и важно, чтобы они работали ниже этого значения.Это поможет вам избежать того, что мы с любовью называем «выпустить волшебный дым».

    Номинальная мощность резистора

    Резисторы

    — одни из наиболее известных виновников потери мощности. Когда вы понижаете напряжение на резисторе, вы также индуцируете ток через него. Чем больше напряжение, тем больше ток, тем больше мощность.

    Вспомните наш первый пример расчета мощности, где мы обнаружили, что если 9V упадет на 10 & ohm; резистор, этот резистор рассеивает 8.1Вт. 8.1 — это лот Вт для большинства резисторов. Большинство резисторов рассчитаны на любую мощность от & frac18; Вт (0,125 Вт) до ½ Вт (0,5 Вт). Если вы уроните 8 Вт на стандартный резистор ½ Вт, приготовьте огнетушитель.

    Если вы видели резисторы раньше, вы наверняка видели их. Сверху — резистор ½ Вт, ниже — Вт. Они не предназначены для рассеивания большого количества энергии.

    Существуют резисторы, рассчитанные на большие перепады мощности. Они специально называются резисторами мощности .

    Эти большие резисторы предназначены для рассеивания большого количества энергии. Слева направо: два 3 Вт 22 кОм; резисторы, два 5W 0.1 & Ом; резисторы, и 25Вт 3 & Ом; и 2 & Ом; резисторы.

    Если вы когда-нибудь обнаружите, что выбираете номинал резистора. Также помните о номинальной мощности. И, если ваша цель — не нагреть что-либо (нагревательные элементы — это, по сути, действительно мощные резисторы), постарайтесь минимизировать потери мощности в резисторе.

    Например,
    Номинальная мощность резистора

    может иметь значение, когда вы пытаетесь выбрать номинал для токоограничивающего резистора светодиода.Скажем, например, вы хотите зажечь сверхяркий красный светодиод диаметром 10 мм на максимальной яркости, используя батарею 9 В.

    Этот светодиод имеет максимальный прямой ток 80 мА и прямое напряжение около 2,2 В. Таким образом, чтобы подать на светодиод 80 мА, вам понадобится 85 Ом; резистор сделать так.

    6,8 В на резисторе упало, а прохождение 80 мА через него означает потерю мощности 0,544 Вт (6,8 В * 0,08 А). Полуваттный резистор это не очень понравится! Он, наверное, не растает, но станет горячим .Не рискуйте и выберите резистор 1 Вт (или сэкономьте энергию и используйте специальный драйвер светодиода).


    Резисторы, безусловно, не единственные компоненты, для которых необходимо учитывать максимальную номинальную мощность. Любой компонент, обладающий резистивным свойством, будет производить тепловые потери. Работа с компонентами, которые обычно подвергаются воздействию высокой мощности, например, регуляторами напряжения, диодами, усилителями и драйверами двигателей, требует особого внимания к потерям мощности и тепловым нагрузкам.

    Ресурсы и дальнейшее развитие

    Теперь, когда вы знакомы с концепцией электроэнергии, ознакомьтесь с некоторыми из этих руководств по теме!

    • Как усилить ваш проект — Ну, вы знаете, что такое «мощность». Но как сделать это в своем проекте?
    • Light — Свет — полезный инструмент для инженера-электрика. Понимание того, как свет соотносится с электроникой, является фундаментальным навыком для многих проектов.
    • Что такое Arduino — Мы много говорили об этой Arduino в этом уроке. Если вы все еще не понимаете, что это такое, ознакомьтесь с этим руководством!
    • Диоды
    • — преобразуют ли они переменный ток в постоянный или просто зажигают светодиодный индикатор питания, диоды являются особенно удобным компонентом для питания проектов.
    • Резисторы
    • — самые основные электронные компоненты, резисторы необходимы практически в каждой цепи.
    • MP3 Player Shield Music Box — Поговорим о передаче энергии! Этот проект сочетает в себе электричество, движение и звук, чтобы создать музыкальную шкатулку на тему «Доктор Кто».
    Закон

    Вт: что это такое? Формула, примеры и закон Ома

    Что такое закон Уоттса?

    Закон Ватта определяет взаимосвязь между мощностью, силой тока и падением напряжения в электрической цепи. Закон Уоттса также гласит, что мощность электрической цепи является произведением ее напряжения и тока.

    Формула закона Ватта

    Формула закона Ватта может быть представлена ​​следующим образом. Он показывает отношения между мощностью (ватты), током (амперы) и напряжением (вольт)

    Примеры закона Ватта

    Ниже мы рассмотрим несколько примеров, чтобы лучше объяснить закон Ватта.

    Закон о Ваттах Пример 1

    Предположим, вы пытаетесь выяснить, сколько 500-ваттных осветительных устройств можно подключить к цепи, не перегорев предохранитель.

    Во-первых, вы хотите знать, какой ток может потребляться от цепи. В большинстве домов есть цепи на 15 А, а в большинстве цепей выключатель на 20 А. Итак, какова будет общая мощность?

    Мы знаем, что ватты = вольт x ампер. Итак, здесь значения напряжения и тока даны как 110 В и 20 А. Теперь расчетная мощность составит 2200 Вт.Итак, все, что мы подключаем к нашей цепи, должно быть меньше 2200 Вт, поскольку это вся мощность, доступная в этой цепи. Вы можете безопасно подключить к цепи четыре лампы мощностью 500 Вт (или две лампы мощностью 1000 Вт) с запасом прочности 200 Вт.

    Закон о Ваттах Пример 2

    Если напряжение лампочки составляет 120 В, а мощность — 60 Вт, каков на самом деле ток?

    Итак, здесь напряжение и мощность лампы указаны как 120 В и 60 Вт соответственно. Мы уже знаем, что ток = мощность / напряжение.Таким образом, при подстановке значений значение тока будет 0,5 Ампера.

    Закон о Ваттах Пример 3

    Рассмотрим лампочку 100 Вт в вашем доме. Мы знаем, что напряжение, подаваемое на лампочку, обычно составляет 110 или 220 В, поэтому потребляемый ток можно измерить следующим образом.

    I = P / V = ​​100 Вт / 110 В = 0,91 А или I = P / V = ​​100 Вт / 220 В = 0,45 А.

    Но вы видите, что проще использовать лампочку на 60 Вт. Ваш поставщик электроэнергии обычно выставляет счет за использование в киловатт-часах (кВтч).Один кВтч — это количество энергии, необходимое для выработки 1000 ватт энергии в течение одного часа.

    Закон о Ваттах против Закон Ома

    Закон Ватта устанавливает взаимосвязь между мощностью, напряжением и током.

    Мощность: Мощность — это скорость использования энергии. Единица измерения электрической мощности называется ватт в честь Джеймса Ватта. Каждый раз, когда один вольт используется для перемещения ампера через цепь, проделанная работа равна одному ватту мощности.

    Когда электроны проходят через сопротивление в электрической цепи, электроны сталкиваются друг с другом и атомами, составляющими сопротивление.Эти столкновения выделяют тепло и приводят к потере энергии. Следовательно, вариация закона Ватта задается как

    Ток: Движение электронов или других частиц через проводник известно как ток. Единицей измерения текущего параметра является ампер. Символ, используемый для обозначения усилителя, — буква «А». В зависимости от ситуации используются верхний и нижний регистры. Символ, используемый для представления текущего параметра, — это буква «I.”

    Напряжение: Электрическое давление, которое заставляет электроны или другие частицы перемещаться по цепи, известно как напряжение. Единицей измерения параметра напряжения является вольт. Символ, используемый для обозначения вольт, — это буква «V». В зависимости от ситуации используются как верхний, так и нижний регистры.

    Сопротивление : это мера сопротивления току, протекающему в электрической цепи. Сопротивление измеряется в омах и обозначается греческой буквой омега.Сопротивление — это хорошо, потому что оно дает нам возможность защитить себя от вредной энергии электричества.

    Закон Ома подтверждает взаимосвязь между напряжением, током и сопротивлением.

    Закон Ома можно представить в виде:

    Круговая диаграмма закона Ома

    Треугольник закона Ватта

    Поскольку оба закона используют одни и те же электрические величины, их можно объединить, чтобы получить некоторые полезные уравнения. Основное уравнение закона Ома переносится на мощность.Это дает нам несколько комбинаций одного и того же уравнения для нахождения различных индивидуальных величин.

    Треугольник мощности

    Есть три возможных формулы для расчета электрической мощности в цепи. Если расчетная мощность положительна, это означает, что оборудование потребляет или использует электроэнергию. Но если расчетная мощность имеет отрицательное значение, компонент производит или генерирует энергию.

    Значения рассчитаны по треугольнику мощности

    Применения закона Ватта

    Некоторые из применений закона Ватта включают:

    • Если у вас есть источник питания, вы должны использовать эту формулу для измерения фактической мощности, которую источник может производить.Вы можете использовать его для измерения энергопотребления всего одного компонента. Когда заданы ток и напряжение источника, значения можно умножить.
    • Потребляемую мощность здания можно измерить по формуле Ватта. При проектировании электропроводки в здании важно оценить общую потребляемую мощность. Затем вы можете использовать эти знания, чтобы выбрать подходящий размер провода для дома. Вы также можете измерить стоимость электроэнергии. Потребляемая мощность здания достигается путем измерения и суммирования индивидуальной номинальной мощности каждого электрического устройства или части здания.
    • Если вы знаете мощность и напряжение электрического компонента, вы можете измерить ток по формуле Ватта (I = P / V). То же самое верно и для напряжения, когда понимаются только ток и мощность (V = P / I).
    • Формулы, полученные из комбинации закона Ватта и закона Ома, можно применять для определения электрического сопротивления компонента.

    Измерение и анализ мощности электродвигателя

    Билл Гэтеридж, менеджер по продукции, Power Measuring Instruments, Yokogawa Corporation of America

    Часть 1: Основные измерения электрической мощности

    Электродвигатели — это электромеханические машины, преобразующие электрическую энергию в механическую.Несмотря на различия в размере и типе, все электродвигатели работают примерно одинаково: электрический ток, протекающий через катушку с проволокой в ​​магнитном поле, создает силу, которая вращает катушку, создавая крутящий момент.

    Понимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим, поэтому давайте начнем с обзора основных измерений электрической и механической мощности.

    Что такое мощность? В самом простом виде мощность — это работа, выполняемая в течение определенного периода времени.В двигателе мощность передается на нагрузку путем преобразования электрической энергии в соответствии со следующими законами науки.

    В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Умножив напряжение на соответствующий ток, можно определить мощность.

    P = V * I, где мощность (P) в ваттах, напряжение (V) в вольтах, а ток (I) в амперах

    Ватт (Вт) — единица мощности, определяемая как один джоуль в секунду.Для источника постоянного тока вычисление представляет собой просто умножение напряжения на ток: W = V x A. Однако определение мощности в ваттах для источника переменного тока должно включать коэффициент мощности (PF), поэтому W = V x A x PF для переменного тока. системы.

    Коэффициент мощности представляет собой безразмерное отношение в диапазоне от -1 до 1 и представляет собой количество реальной мощности, выполняемой при работе с нагрузкой. При коэффициенте мощности меньше единицы, что почти всегда имеет место, будут потери в реальной мощности. Это связано с тем, что напряжение и ток цепи переменного тока имеют синусоидальную природу, а амплитуда тока и напряжения цепи переменного тока постоянно смещается и обычно не идеально совмещена.

    Поскольку мощность равна напряжению, умноженному на ток (P = V * I), мощность является максимальной, когда напряжение и ток выстраиваются вместе, так что пики и нулевые точки на сигналах напряжения и тока возникают одновременно. Это типично для простой резистивной нагрузки. В этой ситуации две формы сигналов находятся «в фазе» друг с другом, а коэффициент мощности будет равен 1. Это редкий случай, поскольку почти все нагрузки не просто обладают идеальным сопротивлением.

    Говорят, что два сигнала «не в фазе» или «сдвинуты по фазе», если два сигнала не коррелируют от точки к точке.Это может быть вызвано индуктивными или нелинейными нагрузками. В этой ситуации коэффициент мощности будет меньше 1, и реальная мощность будет меньше.

    Из-за возможных колебаний тока и напряжения в цепях переменного тока мощность измеряется несколькими способами.

    Реальная или истинная мощность — это фактическая мощность, используемая в цепи, и измеряется в ваттах. В цифровых анализаторах мощности используются методы оцифровки сигналов входящего напряжения и тока для расчета истинной мощности в соответствии с методом, показанным на Рисунке 1.

    В этом примере мгновенное напряжение умножается на мгновенный ток (I), а затем интегрируется за определенный период времени (t). Истинный расчет мощности будет работать с любым типом сигнала независимо от коэффициента мощности (рисунок 2).

    Гармоники создают дополнительную сложность. Несмотря на то, что электрическая сеть номинально работает на частоте 60 Гц, существует много других частот или гармоник, которые потенциально могут существовать в цепи, а также может быть составляющая постоянного или постоянного тока.Общая мощность рассчитывается путем рассмотрения и суммирования всего содержимого, включая гармоники.

    Методы расчета, показанные на Рисунке 2, используются для обеспечения истинного измерения мощности и истинных измерений среднеквадратичного значения для любого типа сигнала, включая все гармонические составляющие, вплоть до полосы пропускания прибора.

    Измерение мощности

    Далее мы посмотрим, как на самом деле измерить мощность в данной цепи. Ваттметр — это прибор, который использует напряжение и ток для определения мощности в ваттах.Теория Блонделя утверждает, что общая мощность измеряется минимум на один ваттметр меньше, чем количество проводов. Например, однофазная двухпроводная схема будет использовать один ваттметр с одним измерением напряжения и одним измерением тока.

    Однофазная трехпроводная двухфазная система часто встречается в проводке общего корпуса. Эти системы требуют двух ваттметров для измерения мощности.

    В большинстве промышленных двигателей используются трехфазные трехпроводные схемы, которые измеряются двумя ваттметрами.Таким же образом потребуются три ваттметра для трехфазной четырехпроводной схемы, при этом четвертый провод является нейтралью.

    На рисунке 3 показана трехфазная трехпроводная система с нагрузкой, подключенной с использованием метода измерения двух ваттметров. Измеряются два линейных напряжения и два связанных фазных тока (с помощью ваттметров Wa и Wc). Четыре измерения (линейный и фазный ток и напряжение) используются для достижения общего измерения.

    Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, установка и конфигурация проводки упрощаются.Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, при которых требуется измерить только мощность или несколько других параметров.

    Для инженерных и научно-исследовательских работ лучше всего подходит трехфазный трехпроводной метод с тремя ваттметрами, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока.Измеряются все три напряжения (от a до b, от b до c, от c до a), и контролируются все три тока.

    Рис. 4. При проектировании двигателей и приводов ключевым моментом является просмотр всех трех значений напряжения и тока, что делает метод трех ваттметров на рисунке выше лучшим выбором.

    Измерение коэффициента мощности

    При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Ø). Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн.Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как активная мощность в ваттах, деленная на полную мощность в напряжении-амперах. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных.

    Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, поскольку в расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат.

    Следовательно, лучше всего использовать метод трех ваттметров для несимметричных нагрузок, поскольку он обеспечивает правильный расчет коэффициента мощности как для сбалансированных, так и для несбалансированных нагрузок.

    Анализаторы мощности

    от Yokogawa и некоторых других компаний используют описанный выше метод, который называется методом подключения 3V-3A (три напряжения и три тока). Это лучший метод для инженерных и проектных работ, поскольку он обеспечивает правильные измерения общего коэффициента мощности и ВА для симметричной или несимметричной трехпроводной системы.

    Основные измерения механической мощности

    В электродвигателе механическая мощность определяется как скорость, умноженная на крутящий момент. Механическая мощность обычно определяется как киловатты (кВт) или лошадиные силы (л.с.), причем один ватт равен одному джоулю в секунду или одному ньютон-метру в секунду.

    Лошадиная сила — это работа, выполняемая за единицу времени. Один л.с. равен 33 000 фунт-футов в минуту. Преобразование л.с. в ватты достигается с использованием этого соотношения: 1 л.с. = 745,69987 Вт.Однако преобразование часто упрощается за счет использования 746 Вт на л.с. (Рисунок 9).

    Для асинхронных двигателей переменного тока фактическая скорость вращения ротора — это скорость вращения вала (ротора), обычно измеряемая с помощью тахометра. Синхронная скорость — это скорость вращения магнитного поля статора, рассчитанная как 120-кратная частота сети, деленная на количество полюсов в двигателе. Синхронная скорость — это теоретическая максимальная скорость двигателя, но ротор всегда будет вращаться немного медленнее, чем синхронная скорость из-за потерь, и эта разница скоростей определяется как скольжение.

    Скольжение — это разница в скорости ротора и синхронной скорости. Для определения процента скольжения используется простой процентный расчет синхронной скорости минус скорость ротора, деленная на синхронную скорость.

    КПД можно выразить в простейшей форме как отношение выходной мощности к общей входной мощности или КПД = выходная мощность / входная мощность. Для двигателя с электрическим приводом выходная мощность является механической, в то время как входная мощность является электрической, поэтому уравнение эффективности выглядит следующим образом: КПД = механическая мощность / входная электрическая мощность.

    Часть 2: Выбор приборов для измерения и анализа мощности электродвигателя

    Различные ассоциации разработали стандарты тестирования, которые определяют точность приборов, необходимых для соответствия их стандарту: IEEE 112 2004, NVLAP 160 и CSA C390. Все три включают стандарты для измерения входной мощности, напряжения и тока, датчиков крутящего момента, скорости двигателя и т. Д. Трансформаторы тока (CT) и трансформаторы напряжения (PT) являются одними из основных контрольно-измерительных приборов, используемых для выполнения этих измерений.

    Соответствующие стандарты очень похожи, за некоторыми исключениями. Допустимые инструментальные ошибки для стандартов IEEE 112 2004 и NVLAP 150 идентичны; однако CSA C390 2006 имеет некоторые отличия в отношении температуры и показаний.

    Например, требования к входной мощности для CSA C390 2006 составляют ± 0,5% от показания и должны включать ошибки CT и PT, тогда как для IEEE 112 2004 и NVLAP 150 требуется только ± 0,5% от полной шкалы.

    Датчики тока

    Датчики тока обычно требуются для тестирования, потому что сильный ток не может быть подан непосредственно в измерительное оборудование.Существует множество датчиков, подходящих для конкретных приложений. Накладные датчики могут использоваться с анализаторами мощности. Также можно использовать щупы для осциллографа, но при их использовании следует соблюдать осторожность, чтобы убедиться, что прибор не подвергается воздействию высоких токов.

    Для трансформаторов тока подводящий провод может быть подключен через окно (трансформаторы тока обычно имеют форму пончика или продолговатую, с отверстием или внутренней частью, называемыми окном), или слаботочные соединения могут быть выполнены с клеммами в верхней части устройство.Шунты обычно используются для приложений постоянного тока, но не переменного тока или искаженных частот, хотя их можно использовать для синхронных двигателей с частотой до нескольких сотен Гц. Доступны специализированные трансформаторы тока, которые хорошо работают на высоких частотах, которые чаще встречаются в осветительных приборах, а не в двигателях и приводах.

    Yokogawa вместе с LEM Instruments разработали уникальную систему трансформаторов тока, которая обеспечивает высокую точность в диапазоне от постоянного тока до кГц. Это трансформатор активного типа, использующий блок кондиционирования источника питания и обеспечивающий точность около 0.05 до 0,02% от показания. Этот тип системы трансформатора тока обеспечивает очень высокую точность измерений, особенно для частотно-регулируемых приводов, которая может изменяться от 0 Гц до рабочей скорости подключенного двигателя.

    Трансформаторы напряжения просто преобразуют напряжение с одного уровня на другой. В измерительных приложениях иногда требуются понижающие трансформаторы для снижения напряжения, подаваемого на измерительный прибор, хотя многие приборы могут работать с относительно высокими напряжениями и не требуют понижающего трансформатора.

    Измерительные трансформаторы обычно представляют собой комбинацию трансформатора тока и трансформатора напряжения и могут уменьшить количество требуемых преобразователей в некоторых измерительных приложениях.

    Рекомендации и меры предосторожности при выборе

    При принятии решения, какое устройство использовать, первым вопросом является частотный диапазон измеряемых параметров. Для синусоидальных волн постоянного тока можно использовать шунты постоянного тока, которые обеспечивают высокую точность и простую установку. Для приложений переменного и постоянного тока можно использовать эффект Холла или измерительный трансформатор активного типа.Технология эффекта Холла имеет более низкий уровень точности, в то время как активный тип обеспечивает большую точность. Различные измерительные трансформаторы могут работать на высоких частотах 30 Гц и более, но их нельзя использовать для постоянного тока.

    Следующее соображение — требуемый уровень точности. Для измерительного трансформатора это обычно указывается как точность передаточного числа. Фазовый сдвиг — еще один важный фактор, и он очень важен, потому что многие трансформаторы предназначены только для измерения тока и не имеют компенсации фазового сдвига.

    Фазовый сдвиг в основном зависит от коэффициента мощности для измерения мощности и, таким образом, влияет на расчет мощности. Например, трансформатор тока, который имеет максимальный фазовый сдвиг 2 ° как часть своей спецификации, внесет ошибку косинуса (2 °) или ошибку 0,06%. Пользователь должен решить, приемлем ли этот процент ошибок для приложения.

    Источником тока является трансформатор тока. Согласно закону Ома, напряжение (E) равно току через проводник (I), умноженному на сопротивление (R) проводника в омах.Открытие вторичной обмотки трансформатора тока фактически увеличивает сопротивление до бесконечности. Это означает, что внутренний ток насыщает катушку, напряжение также стремится к бесконечности, и устройство повреждается или разрушается. Что еще хуже, трансформатор тока со случайно разомкнутой вторичной обмоткой может серьезно травмировать рабочих.

    Никогда не размыкайте вторичную обмотку трансформатора тока. Пользователи могут получить серьезные травмы, а CT может быть поврежден или разрушен.

    Совместимость приборов

    Чтобы определить совместимость прибора, необходимо определить выходной уровень ТТ.Клеммные и другие трансформаторы тока обычно имеют выходную мощность, указанную в милливольтах на ампер, миллиампер на ампер или в амперах. Типичный выходной ток измерительного ТТ может быть указан в диапазоне от 0 до 5 ампер.

    Необходимо учитывать импеданс и нагрузку на ТТ, которые являются факторами, на которые влияет количество проводов, используемых для подключения ТТ к прибору. Эта проводка является сопротивлением или нагрузкой на прибор и, следовательно, может повлиять на измерения.

    Пробники

    при неправильном использовании могут создавать собственный набор проблем.Многие пробники осциллографа рассчитаны на работу с входным сопротивлением осциллографа, но диапазоны входного сопротивления анализатора мощности могут отличаться, и это необходимо учитывать.

    Еще один аспект, который следует учитывать при определении совместимости прибора, — это физические требования к устройству. Размер необходимо учитывать вместе с типом трансформатора тока, например, зажимного или кольцевого типа, каждый из которых будет лучше работать в конкретной ситуации.

    Пример системы трехфазного двигателя

    Теперь мы рассмотрим типичное трехфазное трехпроводное измерение мощности двигателя с использованием метода двух ваттметров.Теорема Блонделя утверждает, что количество требуемых измерительных элементов на единицу меньше количества токонесущих проводников. Это позволяет измерять мощность в трехфазной трехпроводной системе с использованием двух преобразователей при отсутствии нейтрали. Однако, когда есть нейтраль, используются три преобразователя, поскольку теперь имеется четыре проводника.

    Трехфазное питание используется в основном в коммерческих и промышленных средах, особенно для питания двигателей и приводов, поскольку более экономично эксплуатировать большое оборудование с трехфазным питанием.Для расчета трехфазной мощности напряжение каждой фазы умножается на ток каждой фазы, который затем умножается на коэффициент мощности, и это значение умножается на квадратный корень из трех (квадратный корень из 3 равен равно 1,732).

    Для измерения трехфазной мощности, потребляемой нагруженным двигателем, подключается анализатор мощности. На рисунке 1 показано типичное соединение с дисплеем, на котором показаны все три напряжения, все три тока, общая мощность и коэффициент мощности.

    На рисунке 2 показано трехфазное трехпроводное измерение мощности, выполненное с использованием метода двух ваттметров.Перечислены все три тока и напряжения, а также общие ВА и ВАР. Эта конфигурация может отображать отдельные показания мощности фазы, но их не следует использовать напрямую, потому что для этого метода измерения только полная мощность является точным показанием.

    В основном, при использовании метода двух ваттметров в трехпроводной трехфазной системе невозможно измерить мощность отдельной фазы или измерить какие-либо параметры фазы, включая коэффициенты мощности фазы. Однако можно измерить все параметры фазы.

    Для трехфазного двигателя с трехпроводным соединением в треугольник можно измерять линейные напряжения и токи отдельных фаз. Поскольку нейтрали нет, измерять фазные напряжения невозможно. Эта ситуация приводит к некоторым показаниям, которые необходимо пояснить.

    Глядя на отображение формы сигнала на Рисунке 3, можно увидеть линейные напряжения Vab, Vbc и Vac. Линейные напряжения, наблюдаемые прибором, в сбалансированной системе разнесены на 60 °. Токи — это фазные токи, которые приборы видят под углом 120 °.

    Другое представление этой системы изображено на векторной диаграмме Phasor, показанной на рисунке 4. Треугольник в верхней части этого рисунка показывает измерения межфазного напряжения черным цветом, значения фазного напряжения — красным (но это теоретические потому что нейтрали нет), а фазные токи синим цветом.

    В нижней части рисунка показаны разности фаз между напряжениями и токами. Опять же, обратите внимание, что линейные напряжения разнесены на 60 °, а фазные токи разнесены на 120 °.Еще одна деталь заключается в том, что если бы верхняя диаграмма представляла чисто резистивную нагрузку, то синие токи были бы синхронизированы с красными напряжениями. Однако при индуктивной нагрузке (например, в двигателе) синие векторы тока не совпадают по фазе с напряжениями.

    Кроме того, для этого метода измерения на нижней диаграмме векторы тока всегда будут иметь дополнительный сдвиг на 30 ° от напряжений. Суть в том, что правильно настроенный анализатор мощности учтет все эти условия.

    Что, если фазовая мощность и фазовый коэффициент мощности должны быть точно измерены в трехфазной трехпроводной системе, а не просто приблизительно? На рисунке 5 показан метод, позволяющий измерять фазовые параметры трехфазного трехпроводного двигателя путем создания плавающей нейтрали.

    Однако у этой техники есть ограничения. Он будет хорошо работать на входе асинхронного двигателя, синхронного двигателя или аналогичного двигателя без привода с регулируемой скоростью. Следует соблюдать осторожность при использовании этого метода в системе привода с регулируемой скоростью, поскольку высокочастотные искаженные формы сигналов и гармоники могут привести к несогласованным измерениям.

    Более того, метод плавающей нейтрали работает только для оборудования с сигналами синусоидального типа. С помощью привода с широтно-импульсной модуляцией (ШИМ) можно включить линейный фильтр 500 Гц (фильтр нижних частот), который затем позволит отображать показания для основной частоты, но не для общей частоты.

    Трехпроводные и четырехпроводные измерения мощности

    Важно понимать, что мощность будет считываться одинаково независимо от того, измерена ли она трехфазным трехпроводным или трехфазным четырехпроводным методом.Однако при трехфазном четырехпроводном соединении измеряемые значения напряжения представляют собой фазные напряжения от линии к нейтрали.

    Рисунок 6 — снимок экрана анализатора мощности, который показывает, насколько похожи показания мощности и коэффициента мощности для привода с ШИМ, работающего с двигателем, сравнивая трехфазный трехпроводной вход с фильтром 500 Гц с трехфазным четырехпроводным. вход с плавающей нейтралью.

    В альтернативном решении используется функция измерения дельты, которая есть в анализаторах мощности Yokogawa.Функция измерения дельты использует мгновенные измерения линейного напряжения и фазного тока для получения истинного межфазного напряжения, даже если фазы не сбалансированы. Это возможно благодаря вычислению векторной амплитуды внутри процессора. Эта функция также обеспечивает измерения фазной мощности в трехпроводной цепи. Решение для измерения дельты также обеспечивает нейтральный ток.

    Часть 3: Измерения электрической мощности для трехфазного двигателя переменного тока

    Полное тестирование системы привода и двигателя на основе ШИМ (широтно-импульсной модуляции) представляет собой трехэтапный процесс.Шаг 1 — это точное измерение входной и выходной мощности привода с регулируемой скоростью ШИМ для определения эффективности привода и потерь мощности. Шаг 2 — это точное измерение входной мощности двигателя, а шаг 3 — точное измерение механической мощности двигателя.

    Оптимальный метод — объединить все три шага с помощью одного анализатора мощности, чтобы исключить временной сдвиг. Это также обеспечивает отличные расчеты эффективности в едином программно-аппаратном решении.

    Рисунок 7: Этот снимок экрана анализатора мощности показывает, как функцию измерения дельты можно использовать для получения истинных показаний и мощности фазы, даже если фазы не сбалансированы.

    Некоторые анализаторы мощности имеют опцию двигателя, в которой сигналы скорости и момента могут быть интегрированы таким образом. Эти анализаторы мощности могут измерять электрическую мощность и механическую мощность и отправлять данные на ПК с запущенным программным обеспечением от оригинального производителя анализатора или заказным программным обеспечением от системного интегратора.

    Измерения привода ШИМ для двигателей переменного тока

    При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто бывает необходимо измерить как входной, так и выходной сигнал частотно-регулируемого привода с помощью шестифазного анализатора мощности.Эта установка может не только измерять трехфазную мощность, она также может измерять мощность постоянного или однофазного тока. См. Рисунок 1.

    В зависимости от анализатора, режим настройки будет выполняться в нормальном или среднеквадратическом режиме. Конфигурация проводки должна соответствовать применению, например, трехфазный вход и трехфазный выход.

    Любой линейный фильтр или фильтр нижних частот должны быть отключены, поскольку фильтрация затрудняет измерения. Тем не менее, фильтр пересечения нуля или частотный фильтр должен быть включен, потому что он будет фильтровать высокочастотный шум, чтобы можно было измерить основную частоту.Это измерение необходимо при отслеживании частоты привода.

    На рис. 2 показана форма выходного напряжения ШИМ с сильно искаженным напряжением, срезанными высокими частотами и с большим количеством шумов на токовой стороне, что затрудняет измерение. Высокочастотное переключение сигнала напряжения создает сильно искаженную форму волны с высоким содержанием гармоник. Частота варьируется от 0 Гц до рабочей скорости.

    Для такого зашумленного сигнала нужны специальные датчики тока для измерения.Для точных измерений мощности PWM также требуются анализаторы мощности с широкой полосой пропускания, способные измерять эти сложные сигналы.

    На рисунке 3 показан пример содержания гармоник напряжения на выходе ШИМ. Присутствуют частоты биений, а содержание гармоник напряжения превышает 500 порядков (примерно 30 кГц). Большая часть гармоник приходится на нижние частоты на токовой стороне.

    Проблемы измерения привода двигателя с ШИМ

    Напряжение инвертора обычно измеряется одним из двух способов.Можно использовать истинное среднеквадратичное измерение, которое включает полное содержание гармоник. Однако, поскольку основная форма волны — это в первую очередь то, что способствует крутящему моменту двигателя, можно выполнить и использовать более простые измерения. Для большинства приложений требуется только измерение основной формы волны.

    Существует два основных метода измерения основной амплитуды волны напряжения. Первый и самый простой — использовать фильтр нижних частот для удаления высоких частот. Если в анализаторе мощности есть этот фильтр, просто включите его.Правильная фильтрация даст среднеквадратичное значение напряжения основной частоты инвертора. Однако этот тип фильтрации не обеспечивает истинного измерения полной мощности, поэтому фильтрация — не самый требовательный метод.

    Второй метод — это метод измерения выпрямленного среднего, который выдает среднеквадратичное значение напряжения основной волны без фильтрации с использованием определения среднего значения напряжения, масштабированного до среднеквадратичного напряжения. Алгоритм выпрямленного среднего среднего за цикл обеспечит эквивалент основного напряжения, который будет очень близок к среднеквадратичному значению основной волны.

    С помощью этого метода можно измерить полную мощность, общий ток и напряжение основной гармоники.

    Измерение амплитуды основной волны с помощью гармонического анализа

    Функцию гармонического анализа можно использовать для определения истинного основного напряжения с помощью быстрого преобразования Фурье (БПФ) для определения амплитуды каждой гармонической составляющей, включая основную волну. Это дает точное измерение среднеквадратичного напряжения основной волны. Новейшие анализаторы мощности могут выполнять одновременные измерения истинных среднеквадратических значений и гармонических составляющих.

    На рисунке 4 Urms2 (среднеквадратичное значение на выходе ШИМ) является очень большим числом, а F2 (среднее значение основной гармоники) несколько ниже. Значение Urms3 (фильтрация основного) дает аналогичный результат. Наконец, U2 (1) получается из анализа гармоник или вычислений FFT основной гармоники. F2, Urms3 и U2 (1) дают очень близкие результаты, но расчет U2 (1) FFT считается наиболее точным.

    Инверторный ток обычно измеряется только одним способом, и это как истинный среднеквадратичный сигнал, потому что все гармонические токи вносят вклад в повышение температуры в двигателе и ответственны за него, поэтому все они должны быть измерены.

    Еще одно важное измерение связано с приводом В / Гц (Вольт-на-Герц). Привод с ШИМ должен поддерживать постоянное соотношение В / Гц по сравнению с рабочей скоростью двигателя. Анализатор мощности может рассчитывать В / Гц, используя среднеквадратичное значение или значение основного напряжения. Определенная пользователем математическая функция анализатора используется для построения уравнения для этого измерения.

    Измерение напряжения шины постоянного тока

    Напряжение на шине постоянного тока в ШИМ может быть измерено для проверки условий повышенного и пониженного напряжения.Это измерение может быть выполнено внутри привода на клеммах конденсаторной батареи. Однако более простой способ — использовать отображение формы сигнала анализатора мощности с измерением курсора.

    При отображении формы сигнала с помощью курсорного измерения необходимо убедиться, что курсор не находится прямо над небольшими выступами на дисплее. Вместо этого курсор должен находиться поперек осциллограммы, чтобы выполнить точное измерение. На рисунке 5 показано измерение напряжения ШИМ с высокоскоростным переключением.Курсор устанавливается для чтения значения, например 302,81 В в этом измерении.

    Измерения механической мощности

    Механическая мощность измеряется как скорость двигателя, умноженная на крутящий момент двигателя. На рынке существует множество различных типов датчиков скорости и крутящего момента, которые работают с различными двигателями. Хотя анализаторы Yokogawa могут взаимодействовать с большинством датчиков скорости и крутящего момента, все же целесообразно подтверждать совместимость в каждом случае. Эти датчики могут использоваться для предоставления информации о механических измерениях для расчета измерений механической мощности в анализаторе мощности.

    Многие датчики поставляются с интерфейсной электроникой для правильной обработки сигнала для работы с анализаторами мощности или другим оборудованием. Обусловленный сигнал может быть аналоговым выходом или выходом последовательной связи, который поступает на ПК и его прикладное системное программное обеспечение.

    Одним из вариантов измерения механической мощности является использование как датчика, так и соответствующего измерительного прибора от данного производителя. Такой подход имеет преимущества, поскольку датчики будут точно согласованы с прибором.Будут доступны показатели крутящего момента, скорости и мощности, и, вероятно, будут варианты подключения к ПК вместе с соответствующим прикладным программным обеспечением.

    Более интегрированный подход изображен на Рисунке 6. В этой конфигурации выходы сигналов скорости и крутящего момента от измерительных приборов датчика подключаются непосредственно к входам скорости и крутящего момента анализатора мощности. Это дает большое преимущество, заключающееся в том, что измерения электрической и механической мощности могут оцениваться одновременно, а расчеты эффективности могут выполняться непрерывно.

    КПД двигателя, привода и системы

    КПД инвертора в простейшей форме рассчитывается как выходная мощность, деленная на входную мощность, и выражается в процентах. Один из методов, используемых для измерения входной и выходной мощности, заключается в простом подключении измерителей мощности на входе и выходе, при этом показания двух измерителей используются для расчета эффективности.

    Более комплексным методом является использование анализатора мощности с несколькими входами для одновременного измерения входа и выхода, как показано на рисунке 1.Это приводит к более точному расчету эффективности, поскольку он использует один анализатор мощности для устранения потенциальных ошибок, вызванных измерениями временного сдвига.

    С помощью внутренних математических вычислений, предоставляемых анализатором, можно настроить очень простое вычисление через меню для расчета потерь привода и эффективности привода.

    Какой метод мне следует использовать?

    IEEE 112 — это промышленный стандарт США для тестирования двигателей, в котором описаны несколько методов.На рисунке 7 показан дисплей анализатора мощности, поддерживающий «Метод A» стандарта IEEE 112, в котором вся механическая мощность делится на общую мощность, потребляемую двигателем. Стандарт определяет многие параметры, помимо измерений тока и напряжения двигателя, и предоставляет инструкции по проведению общепринятых испытаний многофазных и асинхронных двигателей и генераторов и составлению отчетов по ним. Кроме того, стандарт содержит 11 методов испытаний, чтобы определить, как проводить измерения эффективности двигателей.

    Метод испытаний A — ввод-вывод, определенный в IEEE 112: КПД рассчитывается как отношение выходной мощности измерения к измеренной входной мощности после корректировки температуры и динамометра, если применимо.Испытания проводятся при номинальной нагрузке с помощью механического тормоза или динамометра. Этот рейтинг должен быть ограничен двигателями с номинальной полной нагрузкой не более 1 кВт.

    Метод испытаний B — ввод-вывод с разделением потерь: в методе B выполняются измерения как входной, так и выходной мощности, но различные потери разделяются. Большинство этих потерь просто производят тепло, которое должно рассеиваться двигателем в сборе, и представляют собой энергию, недоступную для выполнения работы. Этот метод является признанным стандартом тестирования U.S. автомобилестроение для двигателей с полной нагрузкой от 1 до 300 кВт.

    Хотя оба метода A и B работают, метод B требует большого количества приборов и обычно выполняется только производителями двигателей. Поскольку большинство производителей используют метод B, а большинство пользователей предпочитают метод A, расчеты эффективности между ними могут отличаться. Данные производителей двигателей и приводов могут использовать разные скорости двигателя, испытательные нагрузки или другие условия испытаний.

    Заключение

    При измерении мощности электродвигателя необходимо учитывать множество факторов, например, полный и истинный коэффициент мощности.Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

    После принятия решения об использовании анализатора мощности необходимо принять решение о частотном диапазоне и уровне точности. Совместимость приборов — еще один важный аспект безопасного получения точных показаний, особенно с трансформаторами тока, и это та область, где необходимо учитывать ввод / опции анализатора. При правильных входных сигналах датчиков измерения механической мощности также можно проводить с помощью анализатора мощности.Выбор правильных датчиков скорости и крутящего момента — это первый шаг в определении механической мощности.

    Некоторые анализаторы мощности также позволяют выполнять измерения с широтно-импульсной модуляцией. Однако настройка анализатора для измерения ШИМ также требует знания о том, как токи и напряжения будут влиять на измерения мощности.

    Прецизионный высокочастотный анализатор мощности — важный инструмент для измерения как механической, так и электрической мощности. Его функции анализа и показания могут помочь улучшить работу и даже продлить срок службы двигателя.Выбор подходящего анализатора и его правильная реализация требуют знаний; однако при правильном использовании данные анализатора мощности предоставят точные и очень ценные данные.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *