Формула расчета энергии: Что означает формула E=mc2 и как с ее помощью раздобыть много энергии — T&P

Содержание

Что означает формула E=mc2 и как с ее помощью раздобыть много энергии — T&P

Все знают формулу E=mc

2, и все слышали, что ее Эйнштейн придумал. Многие даже знают, что Е обозначает энергию, m — массу, а c — скорость света. Но что все это означает?

Если взять обычную пальчиковую батарейку из пульта от телевизора, и превратить ее в энергию, то точно такую же энергию можно получить от 250 миллиардов таких же батареек, если использовать их по-старинке. Не очень хороший получается КПД.

А то и означает, что масса и энергия — это одно и то же. То есть масса — это частный случай энергии. Энергию, заключенную в массе чего угодно, можно посчитать по этой простой формуле.

Скорость света — это очень много. Это 299 792 458 метров в секунду или, если вам так удобнее, 1 079 252 848,8 километров в час. Из-за этой большой величины получается, что если превратить чайный пакетик целиком в энергию, то этого хватит, чтобы вскипятить 350 миллиардов чайников.

У меня есть пара грамм вещества, где мне получить мою энергию?

Перевести всю массу предмета в энергию можно, только если вы где-нибудь найдете столько же антиматерии. А ее получить в домашних условиях проблематично, этот вариант отпадает.

Термоядерный синтез

Существует очень много природных термоядерных реакторов, вы можете их наблюдать, просто взглянув на небо. Солнце и другие звезды — это и есть гигантские термоядерные реакторы.

Другой способ откусить от материи хоть сколько-то массы и превратить ее в энергию — это произвести термоядерный синтез. Берем два ядра водорода, сталкиваем их, получаем одно ядро гелия. Весь фокус в том, что масса двух ядер водорода немного больше, чем масса одного ядра гелия. Вот эта масса и превращается в энергию.

Но тут тоже не так все просто: ученые еще не научились поддерживать реакцию управляемого ядерного синтеза, промышленный термоядерный реактор фигурирует только в самых оптимистичных планах на середину этого столетия.

Ядерный распад

Ближе к реальности — реакция ядерного распада. Она вовсю используется в ядерных электростанциях. Это когда два больших ядра атома распадаются на два маленьких. При такой реакции масса осколков получается меньше массы ядра, пропавшая масса и уходит в энергию.

Ядерный взрыв — это тоже ядерный распад, но неуправляемый, прекрасная иллюстрация этой формулы.

Горение

Превращение массы в энергию вы можете наблюдать прямо у вас в руках. Зажгите спичку — и вот она. При некоторых химических реакциях, например, горения, выделяется энергия от потери массы. Но она очень мала по сравнению с реакцией распада ядра, и вместо ядерного взрыва у вас в руках происходит просто горение спички.

Более того, когда вы поели, еда через сложные химические реакции благодаря мизерной потере массы отдает энергию, которую вы потом используете, чтобы сыграть в настольный теннис, ну или на диване перед телеком, чтобы поднять пульт и переключить канал.

Так что, когда вы едите бутерброд, часть его массы превратится в энергию по формуле E=mc2.

Работа, мощность, энергия — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Механическая работа

К оглавлению…

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Работой, совершаемой постоянной силой F, называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы

F и перемещения S:

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 ньютон на перемещении 1 метр в направлении действия силы.

Если же сила изменяется с течением времени, то для нахождения работы строят график зависимости силы от перемещения и находят площадь фигуры под графиком – это и есть работа:

Примером силы, модуль которой зависит от координаты (перемещения), может служить сила упругости пружины, подчиняющаяся закону Гука (

Fупр = kx).

 

Мощность

К оглавлению…

Работа силы, совершаемая в единицу времени, называется мощностью. Мощность P (иногда обозначают буквой N) – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:

По этой формуле рассчитывается средняя мощность, т.е. мощность обобщенно характеризующая процесс. Итак, работу можно выражать и через мощность: A = Pt (если конечно известна мощность и время совершения работы). Единица мощности называется ватт (Вт) или 1 джоуль за 1 секунду. Если движение равномерное, то:

По этой формуле мы можем рассчитать мгновенную мощность (мощность в данный момент времени), если вместо скорости подставим в формулу значение мгновенной скорости. Как узнать, какую мощность считать? Если в задаче спрашивают мощность в момент времени или в какой-то точке пространства, то считается мгновенная. Если спрашивают про мощность за какой-то промежуток времени или участок пути, то ищите среднюю мощность.

КПД – коэффициент полезного действия, равен отношению полезной работы к затраченной, либо же полезной мощности к затраченной:

Какая работа полезная, а какая затраченная определяется из условия конкретной задачи путем логического рассуждения. К примеру, если подъемный кран совершает работу по подъему груза на некоторую высоту, то полезной будет работа по поднятию груза (так как именно ради нее создан кран), а затраченной – работа, совершенная электродвигателем крана.

Итак, полезная и затраченная мощность не имеют строгого определения, и находятся логическим рассуждением. В каждой задаче мы сами должны определить, что в этой задаче было целью совершения работы (полезная работа или мощность), а что было механизмом или способом совершения всей работы (затраченная мощность или работа).

В общем случае КПД показывает, как эффективно механизм преобразует один вид энергии в другой. Если мощность со временем изменяется, то работу находят как площадь фигуры под графиком зависимости мощности от времени:

 

Кинетическая энергия

К оглавлению…

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела (энергией движения):

То есть если автомобиль массой 2000 кг движется со скоростью 10 м/с, то он обладает кинетической энергией равной Ек = 100 кДж и способен совершить работу в 100 кДж. Эта энергия может превратиться в тепловую (при торможении автомобиля нагревается резина колес, дорога и тормозные диски) или может быть потрачена на деформацию автомобиля и тела, с которым автомобиль столкнулся (при аварии). При вычислении кинетической энергии не имеет значения куда движется автомобиль, так как энергия, как и работа, величина скалярная.

Тело обладает энергией, если способно совершить работу. Например, движущееся тело обладает кинетической энергией, т.е. энергией движения, и способно совершать работу по деформации тел или придания ускорения телам, с которыми произойдёт столкновение.

Физический смысл кинетической энергии: для того чтобы покоящееся тело массой m стало двигаться со скоростью v необходимо совершить работу равную полученному значению кинетической энергии. Если тело массой

m движется со скоростью v, то для его остановки необходимо совершить работу равную его первоначальной кинетической энергии. При торможении кинетическая энергия в основном (кроме случаев соударения, когда энергия идет на деформации) «забирается» силой трения.

Теорема о кинетической энергии: работа равнодействующей силы равна изменению кинетической энергии тела:

Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Применять данную теорему удобно в задачах на разгон и торможение тела.

 

Потенциальная энергия

К оглавлению…

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятие

потенциальной энергии или энергии взаимодействия тел.

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями (так называемые консервативные силы). Работа таких сил на замкнутой траектории равна нулю. Таким свойством обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Потенциальная энергия тела в поле силы тяжести Земли

рассчитывается по формуле:

Физический смысл потенциальной энергии тела: потенциальная энергия равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень (h – расстояние от центра тяжести тела до нулевого уровня). Если тело обладает потенциальной энергией, значит оно способно совершить работу при падении этого тела с высоты h до нулевого уровня. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Часто в задачах на энергию приходится находить работу по поднятию (переворачиванию, доставанию из ямы) тела. Во всех этих случаях нужно рассматривать перемещение не самого тела, а только его центра тяжести.

Потенциальная энергия Ep зависит от выбора нулевого уровня, то есть от выбора начала координат оси OY. В каждой задаче нулевой уровень выбирается из соображения удобства. Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Потенциальная энергия растянутой пружины рассчитывается по формуле:

где: k – жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Растяжение или сжатие х надо рассчитывать от недеформированного состояния тела.

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией. Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком (так как сила упругости всегда направлена против деформации тела):

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Работа силы трения зависит от пройденного пути (такой вид сил, чья работа зависит от траектории и пройденного пути называется: диссипативные силы). Понятие потенциальной энергии для силы трения вводить нельзя.

 

Коэффициент полезного действия

К оглавлению…

Коэффициент полезного действия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Он определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой (формула уже приведена выше).

КПД можно рассчитывать как через работу, так и через мощность. Полезная и затраченная работа (мощность) всегда определяются путем простых логических рассуждений.

В электрических двигателях КПД – отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника. В тепловых двигателях – отношение полезной механической работы к затрачиваемому количеству теплоты. В электрических трансформаторах – отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.

В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т.д.

Из–за неизбежных потерь энергии на трение, на нагревание окружающих тел и т.п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД характеризует как эффективно работает машина или механизм. КПД тепловых электростанций достигает 35–40%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением – 40–50%, динамомашин и генераторов большой мощности – 95%, трансформаторов – 98%.

Задачу, в которой нужно найти КПД или он известен, надо начать с логического рассуждения – какая работа является полезной, а какая затраченной.

 

Закон сохранения механической энергии

К оглавлению…

Полной механической энергией называется сумма кинетической энергии (т.е. энергии движения) и потенциальной (т.е. энергии взаимодействия тел силами тяготения и упругости):

Если механическая энергия не переходит в другие формы, например, во внутреннюю (тепловую) энергию, то сумма кинетической и потенциальной энергии остаётся неизменной. Если же механическая энергия переходит в тепловую, то изменение механической энергии равно работе силы трения или потерям энергии, или количеству выделившегося тепла и так далее, другими словами изменение полной механической энергии равно работе внешних сил:

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему (т.е. такую в которой не действует внешних сил, и их работа соответственно равна нолю) и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной:

Это утверждение выражает закон сохранения энергии (ЗСЭ) в механических процессах. Он является следствием законов Ньютона. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой силами упругости и тяготения. Во всех задачах на закон сохранения энергии всегда будет как минимум два состояния системы тел. Закон гласит, что суммарная энергия первого состояния будет равна суммарной энергии второго состояния.

Алгоритм решения задач на закон сохранения энергии:

  1. Найти точки начального и конечного положения тела.
  2. Записать какой или какими энергиями обладает тело в данных точках.
  3. Приравнять начальную и конечную энергию тела.
  4. Добавить другие необходимые уравнения из предыдущих тем по физике.
  5. Решить полученное уравнение или систему уравнений математическими методами.

Важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими силами действуют силы трения или силы сопротивления среды. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание). Таким образом энергия в целом (т.е. не только механическая) в любом случае сохраняется.

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.

Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии.

 

Разные задачи на работу

К оглавлению…

Если в задаче требуется найти механическую работу, то сначала выберите способ её нахождения:

  1. Работу можно найти по формуле: A = FS∙cosα. Найдите силу, совершающую работу, и величину перемещения тела под действием этой силы в выбранной системе отсчёта. Обратите внимание, что угол должен быть выбран между векторами силы и перемещения.
  2. Работу внешней силы можно найти, как разность механической энергии в конечной и начальной ситуациях. Механическая энергия равна сумме кинетической и потенциальной энергий тела.
  3. Работу по подъёму тела с постоянной скоростью можно найти по формуле: A = mgh, где h – высота, на которую поднимается центр тяжести тела.
  4. Работу можно найти как произведение мощности на время, т.е. по формуле: A = Pt.
  5. Работу можно найти, как площадь фигуры под графиком зависимости силы от перемещения или мощности от времени.

 

Закон сохранения энергии и динамика вращательного движения

К оглавлению…

Задачи этой темы являются достаточно сложными математически, но при знании подхода решаются по совершенно стандартному алгоритму. Во всех задачах Вам придется рассматривать вращение тела в вертикальной плоскости. Решение будет сводиться к следующей последовательности действий:

  1. Надо определить интересующую Вас точку (ту точку, в которой необходимо определить скорость тела, силу натяжения нити, вес и так далее).
  2. Записать в этой точке второй закон Ньютона, учитывая, что тело вращается, то есть у него есть центростремительное ускорение.
  3. Записать закон сохранения механической энергии так, чтобы в нем присутствовала скорость тела в той самой интересной точке, а также характеристики состояния тела в каком-нибудь состоянии про которое что-то известно.
  4. В зависимости от условия выразить скорость в квадрате из одного уравнения и подставить в другое.
  5. Провести остальные необходимые математические операции для получения окончательного результата.

При решении задач надо помнить, что:

  • Условие прохождения верхней точки при вращении на нити с минимальной скоростью – сила реакции опоры N в верхней точке равна 0. Такое же условие выполняется при прохождении верхней точки мертвой петли.
  • При вращении на стержне условие прохождения всей окружности: минимальная скорость в верхней точке равна 0.
  • Условие отрыва тела от поверхности сферы – сила реакции опоры в точке отрыва равна нулю.

 

Неупругие соударения

К оглавлению…

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда неизвестны действующие силы. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц). В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание). Для описания любых ударов Вам нужно записать и закон сохранения импульса, и закон сохранения механической энергии с учетом выделяющейся теплоты (предварительно крайне желательно сделать рисунок).

 

Абсолютно упругий удар

К оглавлению…

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел. Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара. При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя.

Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров. Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения. Центральный удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.

Частным случаем нецентрального упругого удара может служить соударения двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров. В этом случае векторы скоростей шаров после упругого соударения всегда направлены перпендикулярно друг к другу.

 

Законы сохранения. Сложные задачи

К оглавлению…

Несколько тел

В некоторых задачах на закон сохранения энергии тросы с помощью которых перемещаются некие объекты могут иметь массу (т.е. не быть невесомыми, как Вы могли уже привыкнуть). В этом случае работу по перемещению таких тросов (а именно их центров тяжести) также нужно учитывать.

Если два тела, соединённые невесомым стержнем, вращаются в вертикальной плоскости, то:

  1. выбирают нулевой уровень для расчёта потенциальной энергии, например на уровне оси вращения или на уровне самой нижней точки нахождения одного из грузов и обязательно делают чертёж;
  2. записывают закон сохранения механической энергии, в котором в левой части записывают сумму кинетической и потенциальной энергии обоих тел в начальной ситуации, а в правой части записывают сумму кинетической и потенциальной энергии обоих тел в конечной ситуации;
  3. учитывают, что угловые скорости тел одинаковы, тогда линейные скорости тел пропорциональны радиусам вращения;
  4. при необходимости записывают второй закон Ньютона для каждого из тел в отдельности.
Разрыв снаряда

В случае разрыва снаряда выделяется энергия взрывчатых веществ. Чтобы найти эту энергию надо от суммы механических энергий осколков после взрыва отнять механическую энергию снаряда до взрыва. Также будем использовать закон сохранения импульса, записанный, в виде теоремы косинусов (векторный метод) или в виде проекций на выбранные оси.

Столкновения с тяжёлой плитой

Пусть навстречу тяжёлой плите, которая движется со скоростью v, движется лёгкий шарик массой m со скоростью uн. Так как импульс шарика много меньше импульса плиты, то после удара скорость плиты не изменится, и она будет продолжать движение с той же скоростью и в том же направлении. В результате упругого удара, шарик отлетит от плиты. Здесь важно понять, что не поменяется скорость шарика относительно плиты. В таком случае, для конечной скорости шарика получим:

Таким образом, скорость шарика после удара увеличивается на удвоенную скорость стены. Аналогичное рассуждение для случая, когда до удара шарик и плита двигались в одном направлении, приводит к результату согласно которому скорость шарика уменьшается на удвоенную скорость стены:

Задачи о максимальных и минимальных значениях энергии сталкивающихся шаров

В задачах такого типа главное понять, что потенциальная энергия упругой деформации шаров максимальна, если кинетическая энергия их движения минимальна – это следует из закона сохранения механической энергии. Сумма кинетических энергий шаров минимальна в тот момент, когда скорости шаров будут одинаковы по величине и направлены в одном направлении. В этот момент относительная скорость шаров равна нулю, а деформация и связанная с ней потенциальная энергия максимальна.

Расчетные способы учета электрической энергии (мощности) на розничном рынке электрической энергии

  В соответствии с «Основными положениями функционирования розничных рынков электрической энергии», утвержденными постановлением Правительства РФ № 442 от 04.05.2012г., в случаях:

— непредставления потребителем показаний расчетного прибора учета в сроки, установленные в договоре;
— 2-кратного недопуска к расчетному прибору учета, установленному в границах энергопринимающих устройств потребителя, для проведения контрольного снятия показаний или проведения проверки приборов учета;
— неисправности, утраты или истечения срока межповерочного интервала расчетного прибора учета либо его демонтажа в связи с поверкой, ремонтом или заменой;
— для расчета объема потребления электрической энергии (мощности) и оказанных услуг по передаче электрической энергии в отсутствие прибора учета;
— для расчета объема безучетного потребления электрической энергии;
применяются следующие расчетные способы определения объема потребления электрической энергии (мощности):  

а) объем потребления электрической энергии (мощности) в соответствующей точке поставки определяется:

если в договоре, обеспечивающем продажу электрической энергии (мощности) на розничном рынке,  имеются данные о величине максимальной мощности энергопринимающих устройств в соответствующей точке поставки, по формуле:

где:

 — максимальная мощность энергопринимающих устройств, относящаяся к соответствующей точке поставки, а в случае, если  в договоре, обеспечивающем продажу электрической энергии (мощности) на розничном рынке, не предусмотрено распределение максимальной мощности по точкам поставки, то в целях применения настоящей формулы максимальная мощность энергопринимающих устройств в границах балансовой принадлежности распределяется по точкам поставки пропорционально величине допустимой длительной токовой нагрузки соответствующего вводного провода (кабеля), МВт;

Т — количество часов в расчетном периоде, при определении объема потребления электрической энергии (мощности) в которые подлежат применению расчетные способы, или количество часов в периоде времени, в течение которого осуществлялось безучетное потребление электрической энергии, но не более 8760 часов, ч;

если в договоре, обеспечивающем продажу электрической энергии (мощности) на розничном рынке, отсутствуют данные о величине максимальной мощности энергопринимающих устройств, по формулам:

для однофазного ввода:

для трехфазного ввода:

где:

 — допустимая длительная токовая нагрузка вводного провода (кабеля), А;

 — номинальное фазное напряжение, кВ;

 — коэффициент мощности при максимуме нагрузки. При отсутствии данных в договоре коэффициент принимается равным 0,9;

б) почасовые объемы потребления электрической энергии в соответствующей точке поставки определяются по формуле:

где W — объем потребления электрической энергии в соответствующей точке поставки, определенный в соответствии с подпунктом «а», МВт∙ч.

Формула расчета расхода электроэнергии — Морской флот

За электроэнергию нужно платить, так же как и за любые другие ресурсы и услуги. Чтобы не дать себя обмануть при оплате, нужно научиться рассчитывать ее расход. Для этого есть специальные приборы, например, индивидуальный счётчик, который установлен в каждом доме или квартире. Однако он показывает общее потребление, а как рассчитать расход электричества отдельным прибором мы расскажем в этой статье.

Мощность, напряжение и ток

Основными характеристиками электроприборов являются напряжение, ток и мощность. При этом на корпусе либо в паспорте прибора могут указываться либо все три параметра, либо в избирательном порядке. В России и ближнем зарубежье используются электроприборы, рассчитанные под напряжение электросети 220В переменного тока, в Америке, для сравнения, может быть напряжение 110 или 120В.

Ток измеряется в Амперах (А), напряжение в Вольтах (В), а мощность в Ваттах (Вт) (смотрите – Сколько в ампере ватт, как перевести амперы в ватты и киловатты). Если прибор маломощный – скорее всего мощность будет указана в Ваттах, для мощных потребителей, типа стиральной машины или кухонной электроплиты, указывают обычно в киловаттах (кВт). 1кВт = 1000Вт.

В паспорте прибора, в зависимости от конкретного случая, в явном виде мощность вообще может не указываться, а указываться потребление электроэнергии за какой-то период, например кВт в год или в день или за другой промежуток времени.

Итак, вы оплачиваете счета за электроэнергию согласно потребленными кВт/ч. Давайте более подробно рассмотрим, что такое киловатт часы и как их рассчитать.

Электросчетчик

Сейчас в каждой квартире установлен прибор учета электроэнергии или, говоря простыми словами, электросчетчик. На современных моделях есть дисплей, на котором указано количество кВт/ч, которое вы потребили с момента его установки.

На старых моделях это указывается на механическом дисплее-индикаторе из вращающихся барабанчиков с нанесенными на них цифрами.

Вы можете узнать потребление электроэнергии с помощью счетчика, если отключите все потребители и оставите тот, который вас интересует, например на 1 час, тогда вы сможете узнать, сколько Вт/ч или кВт/ч он потребляет. Но такой метод не всегда удобен и возможен.

На большинстве счетчиков крайняя правая цифра обычно либо отделяется запятой, либо выделяется другим цветом, либо обозначается другим способом. Это десятая часть киловатта, при снятии показаний для оплаты она не учитывается.

Также стоит отметить, что далеко не все электрооборудование потребляет указанную в документации мощность в течение всего времени работы. Это связано с режимом работы. Например, стиральная машина потребляет ток в зависимости от того включен ли нагрев, работает ли насос, с какой скоростью вращается двигатель и так далее.

Немного позже мы рассмотрим простой способ определить реальный расход такого оборудования.

Расход электроэнергии по мощности

Если вам известна электрическая мощность прибора, то для расчетов расхода электричества нужно умножить мощность на количество часов. Приведем пример, допустим, у нас есть 2 лампочки – 100 и 60Вт и электрочайник мощностью 2.1 кВт. В день лампочки светят около 6 часов, а чайник закипает 5 минут, пьете чай вы 4 раза в день, значит, всего он работает 20 минут в день.

Рассчитаем расход электроэнергии все этим оборудованием.

Электрочайник работает 20 минут в день, так как нам нужно перевести в часы, то это 1/3 часа, тогда:

Переведем в кВт/ч:

В день этот набор электрооборудования расходует 1.66 кВт/ч.

Теперь можно посчитать, сколько денег вы тратите на его работу в день, неделю, месяц. Для этого умножим на тариф, например 4 рубля за 1 кВт/ч

Итого стоимость работы перечисленного оборудования равна:

Как перевести амперы в киловатты?

В случаях, когда в данных о параметрах электроприбора указаны только напряжение и ток типа:

Нужно перед расчетом потребления вычислить мощность, для этого воспользуемся формулой: P=U*I

Если не вдаваться в подробности – это верно для нагрузки с cosФ равным единице, собственно и для большей части бытового электрооборудования. Дальнейшие расчёты аналогичны предыдущим.

Как узнать реальное потребление электроэнергии прибором?

Расчёты не покажут реальных значений, чтобы их узнать, нужно просто произвести измерения. Наиболее верным способом является использовать счётчик электроэнергии. Самым удобным вариантом является использование специального счётчика для розетки.

Их ещё называют энергометром или ваттметром, возможно, это поможет вам найти прибор в продаже.

Что может энергометр? Это универсальный измерительный прибор, обладающий следующим набором функций:

Измерение мощности потребляемой в данный момент.

Измерение потребления за промежуток времени.

Измерение ток и напряжения.

Расчёт расходов при заданных вами тарифах.

То есть вам нужно просто вставить его в розетку, а прибор, потребление которого нужно определить просто, подключить в розетку расположенную на энергометре. После этого вы можете наблюдать, как изменяется потребляемая мощность в процессе работы и сколько потребляется за один рабочий цикл.

Пример использования розеточного счетчика для определения расхода электроэнергии холодильником, изображен на видео.

Заключение

Расчёт расхода электроэнергии может понадобиться в ряде ситуаций, например для проверки потребления новым оборудованием, или при совместном использовании мощных потребителей с соседей для равной её оплаты. Лучшим способом является установка индивидуального счетчика на прибор или его розеточную версию, как было описано выше.

Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Для проведения расчета необходимо определить мощность бытовых приборов и их количество.

Проанализировав электроприборы, для расчета потребления электроэнергии в квартире составим ориентировочную таблицу потребителей. В таблицу введем данные по потребителям, которые используются в квартире, количество ламп и их работу за сутки. В таблице (ниже) указаны мощности сберегающих ламп в соответствии к лампам накаливания.

Потребление электроэнергии всех потребителей в таблице указано на основе тестирования и паспортных данных электроприборов.

Суммируя расход электроприемников применяем формулу W = Р · t · T, где: W – расход электроэнергии (кВт, мощность) t –время работы бытового прибора в день в часах. Т – количество суток электроприемника.

В настоявшем случае каждый бытовой прибор снабжен специальной биркой по электропотреблению, которая находится на задней стенке или внизу прибора,

К сожалению, с точностью подсчитать расход бытовой электроэнергии очень трудно, так как некоторые приборы могут задействовать разные режимы работы с различными нагрузками, например, стиральная машина или холодильник.

Так как стоимость потребления электроэнергии в каждом регионе России разная можно использовать 4 р. за 1 кВт-час.

Таблица соответствия мощностей ламп накаливания, люминесцентных и светодиодных ламп. Каждый проставляет свои данные касающиеся количества и времени работы ламп, затем по формулам можно провести несложные расчеты, по затрате энергии на освещение.

Кол-во лампМощность ЛН, ВтМощность ЛЛ, ВтМощность лампы LED, ВтКоличество часов работы в день
40148
602011
753218
1004628 светодиодная панель

Расчет расхода электроэнергии в квартире для обеспечения безопасного использования электроприемников определяется по потребляемой мощности, которая находится по формуле:

Р = Р общ х К, Р общ общая мощность, К – коэффициент спроса.

Коэффициент принимается исходя из количества электроприемников и времени использования, пользуются этим коэффициентом на ранних этапах расчета, когда о потребителе имеется мало информации, взять его можно из справочной литературы.

Коэффициент спроса нагрузки находится из отношения мощностей бытовых приборов:

Кс = Рр /Ру где:Рр – расчетная мощность, Ру номинальная или установочная мощность

Коэффициент использования принимается отношением фактической мощности к номинальной Ки = Р /Рн

Коэффициент мощности cos φ равен отношению расчетной мощности к полной Рр / S

Расчетная активная мощность электроприборов различных групп находится по формуле:

Полная мощность определяется по формуле

Расчетный ток определяется из формулы Ip = Pp / Uxcos φ = S/U

Сводная таблица мощности и необходимых для работы коэффициентов отдельных бытовых приборов

(Полную таблицу бытовых приборов можно посмотреть здесь)

ПотребительМощность номинальнаяхарактеристикаКоэф.спросаКоэффициентиспользованияcos φ
Телевизор100 Вт60 Вт

300 Вт

ЖКLED

Плазменный

0,7 – 1,00,65Холодильник70 Вт100Вт

Большой

0.7 – 1.00,65Стиральная машина350 Вт1500 Вт

2600 Вт

ПолуавтоматМалая, автомат

Большой, автомат

1,00,60,8Электроплита для расчета выбирается кол-во работающих конфорок1000 Вт1200 Вт

2500 Вт

Малая конфорка0,81,00,9ЭлектрообогревательОт 1000 до 4000 Вт0,41,01,0/0КондиционерОт 800 до 1200 Вт0,70,80,75ФенОт 400 до 1800 Вт0,7 – 1,0УтюгОт 400 до 2500 Вт0,7 – 1,0ПылесосМощности 800, 1200, 1600, 1800, 2000, 2500 Вт0,7 – 1,0БойлерОт 700 до 2000 Вт0.60.81,0Компьютер потребляет в среднем70 Вт

500 Вт

Компьютер для офиса

Очень мощный

0,61,00,65Монитор компьютераОт 15 до 200 Вт0,65НоутбукОт 30 до 200 ВтПринтер11, 16, 20Вт22 Вт

300

СтруйныйМатричный

лазерный домашний

Теплый пол60 Вт/м 20,51,0Кухонный комбайн, чайник, кофеварка4 – 5 кВт0,31,0тепловентилятор1.5 — 2 кВт0,90,9Водонагреватель проточный1,5 – 2 кВт0,41,01,0Посудомоечная машина2,2 кВт0,80,8Бытовая сеть розеток100 Вт на розетку1 розетка на6 м 20,7при числе розеток 50 шт.-1,0- 10 розетокОсв. коридора25 Вт/м 2ЛН0,80,81,0Осв. кухни30 Вт/м 2ЛН1,00,81,0Осв. спальни30 Вт/м 2ЛН0,60,61,0Освещение зала40 Вт/м 2ЛН0,80,81,0

Также коэффициент спроса можно определить по зависимости от заявленной суммарной мощности всех электроприемников в квартире.

Мощность кВт14203040506070
Кс0,80,650,60,550,50,480,45

Для экономного пользования электроэнергией существуют калькуляторы энергопотребления, которые просто незаменимы для рачительного хозяина, при их помощи автоматически рассчитывается расход электроэнергии. Такая программа помогает оптимизировать расходы на электроснабжение, а также поможет тем, кто собирается применить автономную систему энергоснабжения и рассчитать ее мощность.

Если у Вас имеются какие-либо предложения или замечания, мы будем рады узнать о них.
[email protected]
calculat.org

При предоставлении услуг веб-сайт «Calculat.org» использует файлы куки.

Вы не любите рекламу? Мы ее тоже не любим, тем не менее доходы от рекламы предоставляют возможность функционирования нашего веб-сайта и бесплатного обслуживания наших посетителей. Пожалуйста, подумайте, не стоит ли отменить блокировку рекламы на этом веб-сайте. Спасибо.

Страница не найдена

Клиентский офис *

Абзелиловский клиентский офисАльшеевский клиентский офисАскинский клиентский офисАургазинский клиентский офисБаймакский клиентский офисБакалинский клиентский офисБалтачевский клиентский офисБелебеевский клиентский офисБелебеевское территориальное отделение (БТО)Белокатайский клиентский офисБелорецкий клиентский офисБелорецкий клиентский офис г. МежгорьеБелорецкое территориальное отделение (БцТО)Бижбулякский клиентский офисБирский клиентский офисБлаговарский клиентский офисБлаговещенский клиентский офисБуздякский клиентский офисБураевский клиентский офисБурзянский клиентский офисГафурийский клиентский офисДавлекановский клиентский офисДемский клиентский офисДополнительный офис Нефтекамского отделенияДуванский клиентский офисДюртюлинский клиентский офисЕрмекеевский клиентский офисЗападный клиентский офисЗианчуринский клиентский офисЗилаирский клиентский офисИглинский клиентский офисИлишевский клиентский офисИшимбайский клиентский офисКалтасинский клиентский офисКараидельский клиентский офисКармаскалинско-Архангельский клиентский офисКигинский клиентский офисКугарчинский клиентский офисКумертауский городской клиентский офисКумертауское территориальное отделение (КТО)Кушнаренковский клиентский офисКуюргазинский клиентский офисМелеузовский клиентский офисМечетлинский клиентский офисМишкинский клиентский офисМиякинский клиентский офисНефтекамский клиентский офисНефтекамское территориальное отделение (НТО)Нуримановский клиентский офисОктябрьский клиентский офисОктябрьское территориальное отделение (ОкТО)Салаватский клиентский офисСеверный клиентский офисСеверо-Восточное территориальное отделение (СвТО)Сибайский клиентский офисСибайское территориальное отделение (СбТО)Сипайловский абонентский участок Центрального клиентского офисаСтерлибашевский клиентский офисСтерлитамакский клиентский офисСтерлитамакское территориальное отделение (СТО)Татышлинский клиентский офисТуймазинский клиентский офисУфимский клиентский офисУфимское территориальное отделение (УТО)Учалинский клиентский офисФедоровский клиентский офисХайбуллинский клиентский офисЦентральное территориальное отделение (ЦТО)Центральный абонентский участок Восточного клиентского офисаЧекмагушевский клиентский офисЧерниковский клиентский офисЧишминский клиентский офисШакшинский абонентский участок Северного клиентского офиса Шаранский клиентский офисЮго-Восточный клиентский офисЮжный клиентский офисЯнаульский клиентский офис

Определяем количество энергии в корме — Agrovesti.net

Единицы измерения энергии

Единицей измерения энергии по Международной системе единиц измерения СИ является Джоуль. По его определению один Джоуль равен количеству энергии, которая необходима для того, чтобы вес в 1 кг сдвинуть на 1 м с ускорением 1м/с.

Раньше, при измерении теплоты в качестве единицы измерения энергии использовали калории. Это приблизительно равно количеству тепла, которое необходимо для того, чтобы нагреть 1 г воды на 1°С. Более точно определили количество энергии в калории благодаря электрическому измерению энергии. В качестве единицы измерения служила ватт-секунда, которая равна Джоулю. Таким образом применяемая до этого времени каллория была заменена Джоулем.

Для перевода каллорий в Джоули в англосаксонских странах пользуются коэффициентом Россини по которому 1 кал = 4,184 Джоуля, в то время как по другому определению 1 кал = 4,186 Джоуля. Для измерения энергии в кормлении животных эти разбежности не играют особой роли.

1.000 Дж = 1кДж (килоджоуль)
1.000 кДж = 1МДж (мегоджоуль)
1 Дж = 1 Вт·с (ватт-секунда)
3,6 МДж = кВт·ч (киловатт-час)
1 кал = 4,184 Дж
1 ккал = 4,184 кДж
1 Мкал = 4,184 МДж

1 Дж = 0,239 кал

Разные системы энергетической оценки корма


Энергетическая оценка корма нужна для того, чтобы максимально точно предсказать, какую продуктивность можно получить от животного, кормя его этим кормом. И наоборот, в зависимости от необходимой продуктивности животного, должно быть возможным рассчитать необходимое количество энергии из кормов.

В связи с этим говорят о различных системах энергетической оценки кормов, цель которых – выражение потребности животных в энергии и количества энергии в корме в одинаковом масштабе. Системы энергетической оценки развиваются как компромисс между практической необходимостью и теоретическими выводами. Разные страны имеют разные системы оценки и нормирования потребностей животных в энергии.

Самыми известными устаревшими системами энергетической оценки являются:

  • Кормовая единица (советская единица, овсяная единица) – опирается на 1 кг овса, и равняется 5,9 МДж (1 414 ккал) – все еще применяется во многих постсоветских странах. Но еще в 1963 году на Пленуме отделения животноводства ВАСХНИЛ было принято решение оценивать питательность кормов и рационов, а также нормировать энергетические потребности животных в обменной энергии для каждого их вида.
  • Крaхмальный эквивалент был предложен Оскаром Кельнером в начале ХХ века и использовался в Германии до 1990-х годов,
  • Скандинавская кормовая единица учитывает ценность 1 кг ячменя на производство молока
  • Общая питательность – этот показатель был разработан доктором Леманом в 20-е годы прошлого века и использовался в кормлении свиней в Европе.
  • Общий показатель усваиваемых веществ (Total Digestible Nutrients) – раньше использовался в США и многих других странах для оценки кормов у жвачных.
  • Энергетическая кормовая единица (система энергетической оценки кормов из Ростока) была разработана в бывшей ГДР и имела в своей основе крохмальный эквивалент Кельнера (усовершенствованный подход). За энергетическую кормовую единицу (ЭКЕ) принято 10 МДж обменной энергии.


Основой любой системы энергетической оценки корма является знание всех энергетических потерь при превращении энергии корма в энергию на поддержание жизни и продуктивность.

В большинстве современных стран для оценки кормов используют следующие показатели:показатели оценки кормов

Определение содержания энергии в корме

Определение содержания энергии в корме осуществляется по формулам, которые разрабатываются научно-исследовательскими институтами на основании результатов опытов с животными.


Чистая энергия лактации рассчитывается по формуле (формула VAN ES):

ЧЭЛ (МДж) = 0,6 * (1 + 0,004 * (q – 57)) * ОЭ (МДж),

где q (%) = ОЭ / ВЭ * 100,

ЧЭЛ – чистая энергия лактации

ОЭ – обменная энергия

ВЭ – валовая или общая энергия

Обменная энергия для жвачных рассчитывается по формуле (HOFFMANN et al. 1971):
ОЭ (кДж) = 31,2 х  перевариваемый сырой жир (г)
  13,6 х  перевариваемая сырая клетчатка (г)
  14,7 х  остаток перевариваемой органической массы (г)
  2,34 х  сырой протеин (г)


Остаток перевариваемой органической массы (ОПОМ) = перевариваемая органическая масса – перевариваемый сырой жир – перевариваемая сырая клетчатка.

Валовая энергия корма (для определения коэффициента q) рассчитывается по формуле (GfE, 1995):
ВЭ (кДж) = 23,9 х сырой протеин (г)
  39,8 х сырой жир (г)
  20,1 х сырая клетчатка (г)
  17,5 х безазотистые экстракционные вещества БЭВ (г)


В качестве примера рассчитаем чистую энергию лактации (ЧЭЛ) для сена лугового (начало цветения), все показатели даны на 1 кг сухого вещества.

  • q (%) = ОЭ / ВЭ * 100 = 8,56 / 18,08 *100 = 47,3%
  • ЧЭЛ (МДж) = 0,6 * (1 + 0,004 * (q – 57)) * ОЭ (МДж) = 0,6 * (1 + 0,004 * (47,3 – 57)) * 8,56 = 4,94
  • *Перевариваемая органическая масса = Сырая органическая масса * коэф.перевариваемости = 922 х 62 / 100 = 572
  • ** Остаток перевариваемой органической массы (ОПОМ) = перевариваемая органическая масса – перевариваемый сырой жир – перевариваемая сырая клетчатка = 572 – 10 – 204 = 358

Формула VAN ES используется в Голландии, Бельгии, Франции, Швейцарии, Австрии. Системы оценки незначительно отличаются друг от друга расчетом обменной энергии и валовой энергии. В США система энергетической оценки для коров тоже ориентирована на оценку энергии корма для синтеза молока. Аналогичные формулы разработаны МОЕ, FLATT, TYRRELL.


Обменная энергия для жвачных рассчитывается по формуле (HOFFMANN et al. 1971)
ОЭ (кДж) = 31,2 х перевариваемый сырой жир (г)
  13,6 х перевариваемая сырая клетчатка (г)
  14,7 х остаток перевариваемой органической массы (г)
  2,34 х сырой протеин (г)


Остаток перевариваемой органической массы (ОПОМ) = перевариваемая органическая масса – перевариваемый сырой жир – перевариваемая сырая клетчатка

Пример расчета показан в предыдущем пункте.

Свиньи

Системы расчета количества энергии в кормах для свиней отличаются в разных странах от перевариваемой энергии до чистой энергии.

Ниже привожу формулу расчета обменной энергии для свиней из перевариваемого сырого вещества корма.

Расчет обменной энергии для свиней (перевариваемые сырые вещества в г/кг сухого вещества)
ОЭсв (кДж/кг СВ) = 21,0 х перевариваемый сырой протеин
  х 37,4 х перевариваемый сырой жир
  х 14,4 х перевариваемая сырая клетчатка
  х 17,1 х перевариваемые безазотистые экстракционные вещества
   —   1,4 х сахар*
   —   6,8 х (вещества, расщепляемые в тонком кишечнике – 100)**


* Поправка на сахар: при содержании сахара больше 80 г/кг сухого вещества

** Поправка на вещества, расщепляемые в тонком кишечнике = перевариваемая сырая клетчатка + перевариваемые безазотистые экстракционные вещества – крахмал – сахар, учитывается в расчете, если этот показатель превышает 100 г/кг сухого вещества

Пример расчета обменной энергии для свиней для мелассового жома

Еще одна формула для расчета обменной энергии в готовом комбикорме (используется с целью приблизительной оценки содержания энергии, когда не известен точный состав кормосмеси)

ОЕсв (МДж/кг) = (22,3 СП + 34,1 СЖ + 17,0 СКр + 16,8 СС + 7,4 оргО – 10,9 СК) х 0,001

где

  • СП – сырой протеин
  • СЖ – сырой жир
  • СКр – сырой крахмал
  • СС – сырой сахар
  • оргО – органический остаток, равный органической массе минус сырой протеин, сырой жир, сырой крахмал, сахар и сырая клетчатка
  • СК – сырая клетчатка
Птица

Расчет обменной энергии корма для птицы в большинстве стран осуществляется по формуле, опубликованной World`s Poultry Science Association. В расчете не учитывается сырая клетчатка, поскольку обычно птица получает корма высокоперевариваемые и содержащие малое количество клетчатки.

ОЭптица (кДж) = 15,51 х сырой протеин
  х 34,31 х сырой жир
  х 16,69 х сырой крахмал
  х 13,01 х сырой сахар

Кролики

Перевариваемая энергия для кроликов рассчитывается по формуле

ПЭкролики = 17,79 х СВ / 880 – 0,136 х СК / 10 – 0,48 х СЗ/10,

где

  • СВ – сухое вещество
  • СК – сырая клетчатка
  • СЗ – сырая зола

Формула расчета энергии конденсаторов, как зарядить плоский конденсатор

Конденсаторы являются неотъемлемой частью электрических схем. В большинстве случаев оперируют такими понятиями, как емкость и рабочее напряжение. Эти параметры являются основополагающими.

Конденсаторы различных типов

В некоторых случаях для более полного понимания работы упомянутого элемента необходимо иметь представление, что означает энергия заряженного конденсатора, как она вычисляется и от чего зависит.

Определение понятия энергии

Наиболее просто вести рассуждения применительно к плоскому конденсатору. В основе его конструкции лежат две металлических обкладки, разделенные тонким слоем диэлектрика.

Плоский конденсатор

Если подключить емкость к источнику напряжения, то нужно обратить внимание на следующее:

  • На разделение зарядов по обкладкам электрическим полем затрачивается определенная работа. В соответствии с законом сохранения энергии, эта работа равняется энергии заряженного конденсатора;
  • Разноименно заряженные обкладки притягиваются друг к другу. Энергия заряженного конденсатора в этом случае равняется работе, затраченной на сближение пластин друг к другу вплотную.

Данные соображения позволяют сделать вывод, что формулу энергии заряженного конденсатора можно получить несколькими способами.

Вывод формулы

Энергия заряженного плоского конденсатора наиболее просто определяется, исходя из работы по сближению обкладок.

Рассмотрим силу притяжения единичного заряда одной из обкладок к противоположной:

F=q0E.

В данном выражении q0 – величина заряда, E – напряженность поля обкладки.

Поскольку напряженность электрического поля определяется из выражения:

E=q/(2ε0S), где:

  • q – величина заряда,
  • ε0 – электрическая постоянная,
  • S – площадь обкладок,

формулу силы притяжения можно записать как:

F=q0 q/(2ε0S).

Для всех зарядов сила взаимодействия между обкладками, соответственно, составляет:

F=q2/(2ε0S).

Работа по сближению пластин равняется произведению силы взаимодействия на пройденное расстояние. Таким образом, энергия заряженного конденсатора определяется выражением:

W=A=Fd.

Важно! В приведенном выражении должна быть разница в положениях пластин. Записывая только одну величину d, подразумеваем, что конечным результатом будет полное сближение, то есть d2=0.

С учетом предыдущих выражений можно записать:

W=d q2/(2ε0S).

Известно, что емкость плоского конденсатора определяется из такого выражения:

C=d/(ε0S).

В результате энергия определяется как:

W=q2/(2С).

Полученное выражение неудобно тем, что вызывает определенные затруднения определения заряда на обкладках. К счастью, заряд, емкость и напряжение имеют строгую взаимосвязь:

q = С U.

Теперь выражение принимает полностью понятный вид:

W=CU2/2.

Полученное выражение справедливо для конденсаторов любых типов, не только плоских, и позволяет без затруднений в любой момент времени определять накопленную энергию. Емкость обозначается на корпусе и является величиной постоянной. В крайнем случае ее несложно измерять, используя специальные приборы. Напряжение измеряется вольтметром с необходимой точностью. К тому же очень просто зарядить конденсатор не полностью (меньшим напряжением), снизив, таким образом, запасенную энергию.

Для чего необходимо знать энергию

В большинстве случаев применения емкостей в электрических цепях понятие энергии не употребляется. Особенно это относится к время,- и частотозадающим цепям, фильтрам. Но есть области, где необходимо использовать накопители энергии. Наиболее яркий пример –фотографические вспышки. В накопительном конденсаторе энергия источника питания накапливается сравнительно медленно – несколько секунд, но разряд происходит практически мгновенно через электроды импульсной лампы.

Конденсатор, подобно аккумулятору, служит для накопления электрического заряда, но между этими элементами есть много различий. Емкость аккумулятора несравненно выше, чем у конденсатора, но последний способен отдать ее практически мгновенно. Лишь недавно, с появлением ионисторов, это различие несколько сгладилось.

Ионистор

Какова же ориентировочная величина энергии? Можно для примера вычислить ее для уже упомянутой фотовспышки. Пускай, напряжение питания составляет 300 В, а емкость накопительного конденсатора – 1000 мкФ. При полном заряде величина энергии составит 45 Дж. Это довольно большая величина. Прикосновение к выводам заряженного элемента может привести к несчастному случаю.

Конденсатор фотовспышки

Важно! Принудительный разряд путем закорачивания выводов металлическими предметами чреват выходом устройства из строя. Накопленная энергия конденсатора способна за долю секунды расплавить выводы внутри элемента и вывести его из строя.

Видео

Оцените статью:

Какова формула энергии?

Обновлено 13 декабря 2020 г.

Крис Дезиел

Один из фундаментальных законов Вселенной заключается в том, что энергия не создается и не уничтожается — она ​​только меняет формы. Следовательно, существует множество формул для энергии. Чтобы понять, как эти формулы выражают одно и то же, важно сначала понять, что имеют в виду физики, когда говорят об энергии. Это понятие основано на концепциях классической физики, разъясненных сэром Исааком Ньютоном.2

где KE — кинетическая энергия в джоулях, m — масса в килограммах, а v — скорость в метрах в секунду.

Сила и работа

Три закона движения Ньютона составляют основу классической физики. Первый закон определяет силу как то, что вызывает движение, а второй закон связывает силу, действующую на объект, с ускорением, которому он подвергается. Если сила (F) ускоряет тело на расстояние (d), оно выполняет работу (W), равную силе, умноженной на расстояние, умноженное на коэффициент, учитывающий угол между ними (θ, греческая буква тета ).В математическом выражении это означает:

W = Fd \ cos {\ theta}

Метрическими единицами измерения силы являются ньютоны, единицы измерения расстояния — метры, а единицы измерения — ньютон-метры или джоули. Энергия — это способность выполнять работу, и она также выражается в джоулях.

Кинетическая и потенциальная энергия

Движущийся объект обладает энергией движения, которая эквивалентна работе, которая потребовалась бы для его остановки. Это называется его кинетической энергией и зависит от квадрата скорости объекта (v), а также половины его массы (m).Объект, покоящийся в гравитационном поле Земли, обладает потенциальной энергией в силу своей высоты; если бы он упал свободно, он получил бы кинетическую энергию, равную этой потенциальной энергии. Потенциальная энергия зависит от массы объекта, его высоты (h) и ускорения свободного падения (g). Математически это:

PE = mgh

Электрическая энергия

Расчет энергии в электрических системах зависит от величины тока, протекающего по проводнику (I) в амперах, а также от электрического потенциала или напряжение (В), управляющее током, в вольтах.Умножение этих двух параметров дает мощность электричества (P) в ваттах, а умножение P на время, в течение которого течет электричество (t) в секундах, дает количество электроэнергии в системе в джоулях. Математическое выражение для электрической энергии в проводящей цепи:

E_e = Pt = VIt

В соответствии с этим соотношением, если оставить 100-ваттную лампочку горящей в течение одной минуты, расходуется 6000 джоулей энергии. Это эквивалентно количеству кинетической энергии, которое имел бы 1-килограммовый камень, если бы вы уронили его с высоты 612 метров (без учета трения воздуха).

Некоторые другие формы энергии

Свет, который мы видим, представляет собой электромагнитное явление, обладающее энергией за счет колебаний пакетов волн, называемых фотонами. Немецкий физик Макс Планк определил, что энергия фотона пропорциональна частоте (f), с которой он колеблется, и рассчитал константу пропорциональности (h), которую в его честь называют постоянной Планка. Выражение для энергии фотона выглядит следующим образом:

E_p = hf

Согласно теории относительности Альберта Эйнштейна, каждая частица вещества имеет внутреннюю потенциальную энергию, пропорциональную массе частицы и квадрату скорости света (c) .2

Расчеты Эйнштейна были подтверждены разработкой атомной бомбы.

Amazon.com: Формула ЭНЕРГИИ: Шесть изменяющих жизнь ингредиентов для раскрытия безграничного потенциала Электронная книга: Wells, Shawn, Wolf, Robb, Thurlow, Cynthia: Kindle Store

Наконец, диетолог и главный разработчик рецептов Шон Уэллс нашел ответ в своей книге The ENERGY Formula . Он собрал годы исследований и жизненный опыт, чтобы предоставить вам дорожную карту для преодоления истощения и создания устойчивой энергии.В качестве бонуса эти проверенные стратегии доступны вам за небольшую плату или бесплатно! Теперь у вас нет больше оправданий и никакой усталости! »
JJ Virgin, 4x New York Times автор бестселлера The Virgin Diet

« ENERGY Formula — это противоядие от сегодняшних ожогов. вне, чрезмерно стимулированный мир. Используя сочетание научных знаний и собственного пути через умственные и физические трудности, Шон Уэллс показывает, как любой человек в любом месте может реализовать свой максимальный потенциал.Интригующий, динамичный, информативный и поочередно трогательный и мощный, ENERGY Formula способен нанести удар на каждом уровне «. — Анна Дэвид, New York Times Автор восьми бестселлеров

» За последние десять лет выпуска бестселлеров я знал, что одному человеку нужно было написать книгу о биохакинге и пищевых добавках, и этот человек — Шон Уэллс. Шон исключительный умение брать сложные концепции и делать их понятными, соединяя точки, которые не сходятся друг с другом.Сейчас самое время для такой книги. Я не могу рекомендовать The ENERGY Formula достаточно! »
-Robb Wolf, 2X New York Times и Wall Street Journal , автор бестселлеров The Paleo Solution , Sacred Cow и Wired to Eat

«Шон создал действенный и ясный способ интегрировать ключевые стратегии биохакинга в вашу повседневную жизнь. Его руководство является исчерпывающим, но также связано с добавками, стратегиями питания и образа жизни для оптимизации вашего здоровья.Мне понравилось его обсуждение хронобиологии, ценности сна, ноотропов, голодания и биохактивизма. Обязательно к прочтению всем, кто заинтересован в изучении метаболической гибкости и стратегиях для более здоровой жизни! » наука о питании в сочетании с вдохновением и практическим применением для поддержки вашего обучения и оценки вашего прогресса на этом пути.Шон является мастером объединения медицинских концепций, которые трудно понять, с инновационными советами по биохакингу, чтобы вывести ваше здоровье на новый уровень и по-настоящему процветать ».
— Али Миллер, RD, LD, CDE, автор книги The Anti-Anxiety Diet и ведущий подкаста The Naturally Nourished

«Шон — мой эксперт по всем вопросам питания и энергии. Он понимает, что ваш физический уровень энергии влияет на всех сфер вашей жизни. Если вы все поняли правильно, то у вас есть его формула успеха.Как он объясняет, ЭНЕРГИЯ — это все — сначала сосредоточьтесь на ней как на фундаменте, а затем создайте свою империю! »
— Сьюзи Батиз, генеральный директор Пу-Пурри и Supernatural

« ENERGY Formula обеспечивает! Приготовьтесь посвятить больше времени и энергии всем, что вам нужно для оптимизации своего тела, здоровья и жизни, в одной книге. ShawnWells с легкостью разбирает сложные темы и протоколы в областях биохакинга, долголетия и максимальной производительности, показывая, что действительно возможно, когда мы раскрываем наш безграничный потенциал для процветания! »
— Д-р.Мелисса Петерсен, доктор медицинских наук, автор книги Коды долголетия

«Шон Уэллс — самый заботливый и чуткий автор, которого я знаю! Его книга« Формула ЭНЕРГИИ »- это существенное руководство по пониманию своего тела, а также инструменты для улучшения здоровья. , энергия и долголетие «.
— Эль Русс, автор книги The Paleo Thyroid Solution and Confident as Fu * k

Уравнение электроэнергии

Количество электроэнергии, потребляемой электрической энергией, можно легко рассчитать, а также можно рассчитать стоимость электроэнергии, используемой для конкретного устройства

Расчет электроэнергии

Количество электроэнергии, передаваемой прибору, зависит от его мощности и продолжительности включения.Количество передаваемой электрической энергии от сети измеряется в киловатт-часах, кВтч. Одна единица — 1 кВтч.

Формула электрической энергии

E = P × t

  • E — переданная энергия в киловатт-часах, кВтч
  • P — мощность в киловаттах, кВт
  • T — время в часах, ч.

Обратите внимание, что мощность здесь измеряется в киловаттах, а не в обычных ваттах. Чтобы преобразовать Вт в кВт, необходимо разделить на 1000.

Например, 1000 Вт = 1000 ÷ 1000 = 1 кВт.

Также обратите внимание, что здесь время измеряется в часах, а не в секундах. Чтобы перевести секунды в часы, нужно разделить на 3600.

Например, 7200 с = 7200 ÷ 3600 = 2 часа.

Закон Ома

Самым важным описанием электрической энергии является закон Ома. В нем говорится, что

«При постоянной температуре ток через проводник прямо пропорционален разности потенциалов в точках»

т.е.V α I

А также можно записать как V = IR

Где R — сопротивление проводника

Формула для расчета мощности от электрической энергии

Формула, связывающая энергию и мощность:

Энергия = Мощность x Время.

Единица измерения энергии — джоуль, единица мощности — ватт, единица времени — секунда.

Если мы знаем мощность прибора в ваттах и ​​сколько секунд оно используется, мы можем вычислить количество джоулей электрической энергии, которые были преобразованы в другую форму вылета.

Например, Если лампу на 40 ватт включить на один час, сколько джоулей электрической энергии было преобразовано лампой?

Энергия (Вт) = Мощность x Время

Энергия = 40 x 3600

= 14 400 джоулей

Примеры электроэнергии

Вычислите количество тепла, выделяемого электрическим утюгом с сопротивлением 30 Ом и потребляющим ток 3 ампера при включении в течение 15 секунд.

Энергия = Мощность x Время

Мощность = I2R

= 32 * 30

= 270 Вт

Энергия = Мощность x Время

= 270 х 15

= 4050 джоулей

Важные факты, касающиеся уравнений электрической энергии

  • Мы платим за энергию (не за заряд, ток или напряжение).
  • Электроэнергетические компании используют внесистемную единицу, кВтч, для расчета наших счетов.

Что нужно запомнить

Электрическая энергия определяется как общая выполненная работа или энергия, поставленная источником ЭДС. в поддержании тока в электрической цепи в течение заданного времени:
Электрическая энергия = электрическая мощность × время = P × t.

Таким образом, формула для электрической энергии имеет вид:

Электрическая энергия = P × t = V × I × t = I2 × R × t = V2t / R.

  • S.I единицей электрической энергии является джоуль (обозначается Дж), где 1 джоуль = 1 ватт × 1 секунда = 1 вольт × 1 ампер × 1 секунда.
  • Коммерческой единицей электроэнергии является киловатт-час (кВтч), где 1 кВтч = 1000 Втч = 3,6 × 106Дж = одна единица потребляемой электроэнергии.
  • Количество единиц потребляемой электроэнергии n = (общая мощность × время в часе) / 1000.
  • Стоимость потребления электроэнергии в доме = нет. единиц потребленной электрической энергии × количество на единицу электрической энергии.

Электроэнергия прочие виды

Калькулятор кинетической энергии

Этот калькулятор кинетической энергии — инструмент, который помогает вам оценить энергию движения. Он основан на формуле кинетической энергии, которая применяется к каждому объекту, движущемуся в вертикальном или горизонтальном направлении.

В следующей статье объясняется:

  • Что такое кинетическая энергия
  • Как используется формула кинетической энергии
  • Определение кинетической энергии
  • Какие бывают общие единицы кинетической энергии
  • В чем разница между потенциальной и кинетической энергией
  • Как можно применить теорему работы-энергии
  • Как соотносятся друг с другом уравнения динамического давления и кинетической энергии

Определение кинетической энергии

Энциклопедия дает следующее определение кинетической энергии:

Кинетическая энергия объекта — это энергия, которой он обладает благодаря своему движению .Он определяется как работа, необходимая для ускорения тела данной массы от состояния покоя до заявленной скорости. Получив эту энергию во время ускорения, тело сохраняет свою кинетическую энергию до тех пор, пока его скорость не изменится на . Такой же объем работы совершается телом при замедлении от текущей скорости до состояния покоя.

Что такое кинетическая энергия?

Кинетическая энергия — это энергия движущегося объекта. Он предоставляет информацию о том, как масса объекта влияет на его скорость.Возьмем пример. Если вы поместите один и тот же двигатель в грузовик и гладкую машину, первый не сможет достичь той же скорости, что и второй, из-за своей массы. Вы можете легко узнать это с помощью нашего калькулятора кинетической энергии.

Формула кинетической энергии

Формула кинетической энергии определяет соотношение между массой объекта и его скоростью. Уравнение кинетической энергии выглядит следующим образом:

KE = 0,5 * м * v² ,

где:

С помощью формулы кинетической энергии вы можете оценить, сколько энергии необходимо для перемещения объекта.Та же энергия может быть использована для замедления объекта, но имейте в виду, что скорость возведена в квадрат. Это означает, что даже небольшое увеличение скорости изменяет кинетическую энергию на относительно большую величину.

Как насчет того, чтобы попробовать наш калькулятор кинетической энергии? Этот инструмент выполняет любые вычисления за вас после ввода массы и скорости объекта. Он даже работает в обратном порядке, просто введите любые две известные переменные, и вы получите третью! Если вы не знаете скорость объекта, вы можете легко рассчитать ее с помощью нашего калькулятора скорости.

Однако вы должны знать, что эта формула не учитывает релятивистские эффекты , которые становятся заметными на более высоких скоростях. Если объект движется со скоростью, превышающей 1% скорости света (приблизительно 3 000 км / с или 3 000 000 м / с), вам следует использовать наш калькулятор релятивистской кинетической энергии.

Единицы кинетической энергии

Единицы кинетической энергии точно такие же, как и для любого другого вида энергии. Наиболее популярные и часто используемые единицы кинетической энергии:

  • Джоуль (Дж), эквивалент кг * м² / с² — единица СИ,
  • Фут-фунт (ft · lb) — британская единица измерения,
  • Электронвольт (эВ),
  • калорий (кКал.),
  • Ватт-час (Втч).

Все эти единицы кинетической энергии могут быть легко преобразованы друг в друга с помощью следующих соотношений: 1 Дж = 0,7376 фут · фунт = 6,242 · 10¹⁸ эВ = 0,239 кал = 2,778 · 10⁻⁴ Вт · ч.

Как видите, в зависимости от шкалы они могут отличаться на значительное количество порядков, поэтому удобно использовать научную нотацию или выражать их с помощью некоторого префикса, например, кило- (ккал, кВтч), мега- (МэВ). и т. д. В любом случае, вам не нужно беспокоиться об единицах измерения при использовании нашего калькулятора кинетической энергии; вы можете выбрать то, что вам нравится, щелкнув единицы измерения, и значение будет немедленно преобразовано.

Потенциальная и кинетическая энергия

Потенциальная энергия относится к гравитационному притяжению, действующему на объект, относительно того, как далеко он должен упасть. Когда объект набирает высоту, его потенциальная энергия увеличивается. Если вы хотите проверить, что такое потенциальная энергия и как ее рассчитать, воспользуйтесь нашим калькулятором потенциальной энергии.

Теорема работы-энергии

Оказывается, кинетическая энергия и количество работы, выполняемой в системе, строго коррелированы, и их связь может быть описана теоремой работы-энергии.В нем говорится, что работа, совершаемая всеми внешними силами, преобразуется в изменение кинетической энергии:

W = ΔKE = KE₂ - KE₁ .

На самом деле существует несколько типов кинетических энергий. Мы можем выделить:

  1. Поступательная кинетическая энергия — наиболее известный вид. Это связано с движением объекта, движущегося в определенном направлении, и с расстоянием, которое он преодолевает за данный момент времени. Это вид энергии, который вы можете оценить с помощью этого калькулятора кинетической энергии.

  2. Кинетическая энергия вращения — как следует из названия, учитывает движение тела вокруг оси.

  3. Кинетическая энергия колебаний — можно представить, как частица движется вперед и назад вокруг некоторой точки равновесия, аппроксимированное гармоническим движением. В зависимости от структуры это может быть показано как растяжение, скручивание или изгиб.

В микроскопическом масштабе все эти примеры кинетической энергии являются проявлениями тепловой энергии, которая увеличивается с повышением температуры.

Связь между динамическим давлением и кинетической энергией

Выражение динамического давления (вызванного течением жидкости) следующее:

p = ρ * v² / 2 .

Это очень похоже на уравнение кинетической энергии, потому что масса заменяется плотностью, и это не совпадение. Другое название динамического давления — кинетическая энергия на единицу объема , и аналогично плотность определяется как масса, содержащаяся в определенном объеме.Приложив немного воображения, вы можете использовать наш калькулятор кинетической энергии для оценки динамического давления данной жидкости. Если вы замените массу в кг на плотность в кг / м³ , то вы можете представить результат в Дж как динамическое давление в Па .

Примеры кинетической энергии

Вы сидите в классе, и ваш учитель говорит вам, что кинетическая энергия объекта равна 1 Дж. Как вы думаете — это много или нет? Ключевая информация — это то, о каком объекте мы говорим.Давайте рассмотрим несколько примеров вычислительной кинетической энергии, чтобы разобраться с различными порядками величины:

  1. Некоторые из частиц с самой высокой энергией, производимые физиками (например, протоны в Большом адронном коллайдере, LHC), достигают кинетической энергии в несколько ТэВ. Говорят, что это сравнимо с кинетической энергией комара. Это впечатляет, когда понимаешь, какое огромное количество молекул содержится в одном насекомом. Однако, если мы вычислим значение в джоулях, то результат будет порядка 1 мкДж .Исходя из этого, отдельная частица с кинетической энергией 1 Дж является чрезвычайно высокой энергией и, конечно же, не будет производиться человечеством в ближайшее время.

  2. Рассмотрим пулю массой 5 г , летящую со скоростью 1 км / с . Его кинетическая энергия равна 2,500 Дж , что намного больше 1 Дж из-за значительной скорости. Вот почему пули наносят большой урон при поражении целей. Воспользуйтесь калькулятором кинетической энергии, чтобы узнать, с какой скоростью должна будет лететь та же пуля, чтобы ее энергия достигла 1 Дж .Это скорость около 20 м / с . Что ж, при ударе о тело все равно будет больно, но хуже, чем синяк, это точно не вызовет.

  3. Корабль весит 50 000 тонн и может двигаться со скоростью 10 узлов . Мы всегда можем использовать преобразователь скорости, чтобы найти, что это около 5,1 м / с . Его кинетическая энергия тогда составляет примерно 661 МДж . Такое количество получено в основном из-за его внушительной массы.

FAQ

Что такое кинетическая энергия?

Кинетическая энергия может быть определена как энергия, которой обладает объект или тело во время движения.Кинетическая энергия зависит от двух свойств: массы и скорости объекта.

Какая формула для расчета кинетической энергии?

Формула для расчета кинетической энергии объекта массы m, движущегося со скоростью v, имеет следующий вид: KE = 0,5 * м * v 2

Как рассчитать кинетическую энергию?

Для расчета кинетической энергии:

  1. Найдите квадрат скорости объекта.
  2. Умножьте это на массу объекта.
  3. Произведение — кинетическая энергия объекта.

Сколько кинетической энергии у мяча для крикета, летящего со скоростью 90 миль в час?

Средний мяч для крикета весит 165 г , следовательно, кинетическая энергия мяча составляет KE = 0,5 * m * v 2 = 133,5 Дж .

Какова кинетическая энергия футбольного мяча при ударе с игры?

Футбольный мяч, движущийся к филд-голу со скоростью около 38,4 м / с или 126 фут / с , весом 450 г или ~ 1 фунт имеет кинетическую энергию 331.7 Дж .

Формула потенциальной энергии — Наука поражена

Нравится? Поделиться этим!

Какова формула потенциальной энергии гравитационного поля, пружины или электрического поля? Как определяется потенциальная энергия? Здесь вы найдете ответы на все эти и другие вопросы вместе с готовыми калькуляторами потенциальной энергии.

Энергия — самое фундаментальное понятие в физике. Какой бы ни была действующая сила ( электромагнитная, гравитационная, сильная или слабая ), каждое изменение, которое происходит во Вселенной, представляет собой преобразование из потенциала в кинетической энергии .Поскольку частица просто находится в пространстве в присутствии сил, она имеет присущую ей энергию, которая называется потенциальной энергией. В зависимости от задействованной силы соответствующие формулы потенциальной энергии меняются. Чтобы получить подробное объяснение потенциальной энергии, прокрутите вниз. Далее представлены наиболее часто используемые формулы, а также калькуляторы.

Формулы потенциальной энергии

Формула для потенциальной энергии системы зависит от действующих сил и составляющих системы.Все макроскопические системы за пределами атомного ядра управляются либо электромагнитными, либо гравитационными силами. Потенциальная энергия измеряется в единицах СИ « Джоуль ».

Гравитационная потенциальная энергия является функцией положения объекта в гравитационном поле, силы тяжести в этой точке и массы объекта. Формула выглядит следующим образом:

Гравитационная потенциальная энергия = mgh

где m — масса, g — ускорение свободного падения (9.8 м / с 2 ) и h — высота над поверхностью Земли.

Формула упругой потенциальной энергии пружины с постоянным k имеет следующий вид:

Упругая потенциальная энергия = ½ kx 2

где x — параметр смещения пружины.

Формула для испытательного заряда «q», помещенного в присутствие источника «Q», выглядит следующим образом:

Электрическая потенциальная энергия = q / 4πε o N i = 1 [Q i / R i ]

где q — испытательный заряд, ε o — диэлектрическая проницаемость свободного пространства, Q — заряд поля и R — расстояние между двумя точечными зарядами.

Что такое потенциальная энергия?

Потенциальная энергия — это запасенная энергия в любой системе. Это тип энергии, которой обладает система из-за ее конфигурации и положения различных составляющих этой системы в присутствии силы. Это энергия, запасенная в объекте, когда работа выполняется против силы. В зависимости от конфигурации системы и действующих в ней сил существуют различные формы потенциальной энергии. Движение происходит, когда эта накопленная энергия преобразуется в кинетическую энергию.

Формула для потенциальной энергии объекта в силовом поле зависит от его положения и других присущих факторов, таких как масса и заряд. Например, когда объект поднимается, работа выполняется против силы тяжести (, которая тянет его вниз, ). Эта работа, проделанная с объектом, сохраняется в виде потенциальной энергии. Когда такой объект выпускается с высоты, на которую он был поднят, и он свободно падает, гравитационная потенциальная энергия преобразуется в кинетическую энергию. Таким образом, можно сказать, что объекты на больших высотах на Земле имеют более высокую потенциальную энергию.

Знание потенциальной энергии системы в точке — полезный результат, но в конечном итоге нам нужно уравнение, которое предсказывает положение частицы в любой момент времени вместе с ее энергией. Чтобы получить это, нужно вывести уравнение движения системы. Есть разные способы его получения. Один из них — через решение лагранжевых уравнений движения. Лагранжиан — это разность потенциальной и кинетической энергии системы. Вам необходимо знать формулы потенциальной энергии для конкретных систем вместе с выражениями кинетической энергии, чтобы установить лагранжиан.Следовательно, понимание потенциальной энергии и ее вычисления — это лишь первый шаг на пути к классической механике.

Похожие сообщения

  • Формула кинетической энергии

    Зная формулы кинетической энергии, вы можете вычислить энергию движущейся системы. Здесь мы также предоставляем и объясняем вращательные и релятивистские формулы.

  • Формула для скорости

    Если вы ищете формулу скорости в физике, в этой статье есть все необходимое для вас.Читайте, чтобы узнать все о том же.

Веб-сайт класса физики

Работа, энергия и сила: обзор набора задач

Этот набор из 32 задач нацелен на вашу способность использовать уравнения, связанные с работой и мощностью, для расчета кинетической, потенциальной и полной механической энергии, а также использовать соотношение работа-энергия для определения конечной скорости, тормозного пути или конечной высоты подъема. объект.Более сложные задачи обозначены цветом синих задач .

Работа

Работа возникает, когда на объект действует сила, вызывающая смещение (или движение) или, в некоторых случаях, чтобы препятствовать движению. В этом определении важны три переменные — сила, смещение и степень, в которой сила вызывает или препятствует смещению. Каждая из этих трех переменных входит в уравнение работы.Это уравнение:

Работа = Сила • Смещение • Косинус (тета)

W = F • d • cos (тета)

Поскольку стандартной метрической единицей силы является Ньютон, а стандартной метрической единицей перемещения является метр, то стандартной метрической единицей работы является Ньютон • метр, определяемый как Джоуль и сокращенно J.

Самая сложная часть уравнения работы и расчетов работы — это значение угла тета в приведенном выше уравнении.Угол — это не просто заявленный угол в задаче; это угол между векторами F и d. При решении рабочих задач нужно всегда помнить об этом определении: тета — это угол между силой и смещением, которое она вызывает. Если сила в том же направлении, что и смещение, то угол равен 0 градусов. Если сила направлена ​​в направлении, противоположном смещению, то угол составляет 180 градусов. Если сила направлена ​​вверх, а смещение вправо, то угол составляет 90 градусов.Это показано на рисунке ниже.


Власть

Мощность определяется как скорость, с которой работа выполняется над объектом. Как и все величины скорости, мощность зависит от времени. Мощность связана с тем, насколько быстро выполняется работа. Две одинаковые работы или задачи можно выполнять с разной скоростью — медленно или быстро. Работа в каждом случае одинакова (поскольку это одинаковые рабочие места), но мощность разная.Уравнение мощности показывает важность времени:

Мощность = Работа / время

P = Вт / т

Единицей стандартной метрической работы является Джоуль, а стандартной метрической единицей измерения времени является секунда, поэтому стандартной метрической единицей измерения мощности является Джоуль / секунда, определяемая как ватт и сокращенно W. путайте единицу Ватт, обозначаемую сокращенно W, с количественной работой, также обозначаемой буквой W.

Объединение уравнений мощности и работы может привести ко второму уравнению мощности. Мощность — Вт / т, работа — F • d • cos (тета). Подставляя выражение для работы в уравнение мощности, получаем P = F • d • cos (theta) / t. Если это уравнение переписать как

P = F • cos (тета) • (d / t)

можно заметить возможное упрощение. Отношение d / t — это значение скорости для движения с постоянной скоростью или средняя скорость для ускоренного движения.Таким образом, уравнение можно переписать как

P = F • v • cos (тета)

где v — постоянная скорость или среднее значение скорости. Некоторые из задач в этом наборе задач будут использовать это производное уравнение для мощности.

Механическая, кинетическая и потенциальная энергии

Есть две формы механической энергии — потенциальная энергия и кинетическая энергия.

Потенциальная энергия — это накопленная энергия положения. В этом наборе задач нас больше всего будет интересовать запасенная энергия из-за вертикального положения объекта в гравитационном поле Земли. Такая энергия известна как потенциальная энергия гравитации (PE grav ) и рассчитывается по формуле

.

PE grav = m • g • h

где м, — масса объекта (в условных единицах килограмма), г, — ускорение свободного падения (9.8 м / с / с) и h — высота объекта (в стандартных единицах измерения) над произвольно заданным нулевым уровнем (например, землей или верхом лабораторного стола в комнате физики).

Кинетическая энергия определяется как энергия, которой обладает объект из-за своего движения. Объект должен двигаться, чтобы обладать кинетической энергией. Количество кинетической энергии ( KE ), которым обладает движущийся объект, зависит от массы и скорости. Уравнение кинетической энергии

КЕ = 0.5 • м • в 2

где м, — это масса объекта (в условных единицах килограммов), а v — это скорость объекта (в стандартных единицах измерения м / с).

Полная механическая энергия, которой обладает объект, складывается из его кинетической и потенциальной энергий.

Связь между работой и энергией

Существует связь между работой и общей механической энергией.Взаимосвязь лучше всего выражается уравнением

TME i + W nc = TME f

Другими словами, это уравнение говорит о том, что начальное количество полной механической энергии ( TME i ) системы изменяется работой, совершаемой с ней неконсервативными силами ( W nc ). Конечное количество полной механической энергии ( TME f ), которой обладает система, эквивалентно начальному количеству энергии ( TME i ) плюс работа, выполняемая этими неконсервативными силами ( W нс. ).

Механическая энергия, которой обладает система, представляет собой сумму кинетической энергии и потенциальной энергии. Таким образом, приведенное выше уравнение может быть преобразовано в форму

KE i + PE i + W NC = KE f + PE f

0,5 • m • v i 2 + m • g • h i + F • d • cos (theta) = 0,5 • m • v f 2 + m • g • h f

Работа, совершаемая системой неконсервативными силами (W nc ), может быть описана как положительная работа или как отрицательная работа.Положительная работа выполняется в системе, когда сила, выполняющая работу, действует в направлении движения объекта. Отрицательная работа выполняется, когда сила, выполняющая работу, противодействует движению объекта. Когда положительное значение работы подставляется в уравнение работы-энергии выше, конечное количество энергии будет больше, чем начальное количество энергии; считается, что система получила механическую энергию. Когда отрицательное значение работы подставляется в приведенное выше уравнение работы-энергии, конечное количество энергии будет меньше начального количества энергии; считается, что система потеряла механическую энергию.Бывают случаи, когда единственными силами, выполняющими работу, являются консервативные силы (иногда называемые внутренними силами). Обычно такие консервативные силы включают гравитационные силы, силы упругости или пружины, электрические силы и магнитные силы. Когда единственные силы, выполняющие работу, являются консервативными силами, тогда член W nc в приведенном выше уравнении равен нулю. В таких случаях говорят, что система сохранила свою механическую энергию.

Правильный подход к проблеме работы-энергии включает в себя внимательное чтение описания проблемы и подстановку значений из него в уравнение работы-энергии, перечисленное выше.Выводы о некоторых терминах должны быть сделаны на основе концептуального понимания кинетической и потенциальной энергии. Например, если объект изначально находится на земле, то можно сделать вывод, что PE i равен 0, и этот член может быть исключен из уравнения работы-энергии. В других случаях высота объекта в исходном состоянии такая же, как и в конечном состоянии, поэтому условия PE i и PE f совпадают. Таким образом, их можно математически исключить с каждой стороны уравнения.В других случаях скорость постоянна во время движения, поэтому члены KE i и KE f одинаковы и, таким образом, могут быть исключены математически с каждой стороны уравнения. Наконец, есть случаи, когда условия KE и / PE не указаны; вместо этого даны масса (м), скорость (v) и высота (h). В таких случаях члены KE и PE могут быть определены с помощью соответствующих уравнений. Сделайте своей привычкой с самого начала просто начать с уравнения работы и энергии, отменить члены, которые равны нулю или неизменны, подставить значения энергии и работы в уравнение и найти указанное неизвестное.

Привычки эффективно решать проблемы

Эффективный решатель проблем по привычке подходит к физическим проблемам таким образом, чтобы отражать набор дисциплинированных привычек. Хотя не все эффективные специалисты по решению проблем используют один и тот же подход, все они имеют общие привычки. Эти привычки кратко описаны здесь. Эффективное решение проблем …

  • …. внимательно читает задачу и создает мысленную картину физической ситуации. При необходимости они набрасывают простую схему физической ситуации, чтобы помочь визуализировать ее.
  • … определяет известные и неизвестные величины в организованном порядке, часто записывая их на диаграмме. Они приравнивают заданные значения к символам, используемым для представления соответствующей величины (например, m = 1,50 кг, v i = 2,68 м / с, F = 4,98 Н, t = 0,133 с, v f = ???) .
  • … строит стратегию решения неизвестной величины; стратегия, как правило, сосредоточена вокруг использования физических уравнений и во многом зависит от понимания физических принципов.
  • … определяет подходящую (ые) формулу (ы) для использования, часто записывая их. При необходимости они выполняют необходимое преобразование количеств в правильные единицы.
  • … выполняет подстановки и алгебраические манипуляции, чтобы найти неизвестную величину.

Подробнее …

Дополнительная литература / Учебные пособия:

Следующие страницы из учебного пособия по физике могут быть полезны для понимания концепций и математики, связанных с этими проблемами.

Набор задач «Работа, энергия и мощность»

Просмотреть набор задач

Решения с аудиогидом для работы, энергии и мощности

Просмотрите решение проблемы с аудиогидом:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32

Электроэнергия, мощность и заряд

Электрическая энергия — это способность электрической цепи производить работу, создавая действие.Это действие может принимать различные формы, такие как тепловая, электромагнитная, механическая, электрическая и т. Д. Электроэнергия может вырабатываться как батареями, генераторами, динамо-машинами, фотоэлектрическими батареями и т. Д., Либо храниться для будущего использования с использованием топливных элементов, батарей и т. Д. конденсаторы или магнитные поля и т. д. Таким образом, электрическая энергия может быть создана или сохранена.

Мы помним из школьных уроков естествознания, что « Закон сохранения энергии » гласит, что энергия не может быть создана или уничтожена, а только преобразована.Но для того, чтобы энергия выполняла какую-либо полезную работу, ее нужно преобразовать из одной формы в другую. Например, двигатель преобразует электрическую энергию в механическую или кинетическую (вращательную) энергию, а генератор преобразует кинетическую энергию обратно в электрическую для питания цепи.

То есть электрические машины преобразуют или меняют энергию из одной формы в другую, выполняя работу. Другой пример — лампа, электрическая лампочка или светодиод (светоизлучающий диод), которые преобразуют электрическую энергию в световую энергию и тепловую (тепловую) энергию.Тогда электрическая энергия очень универсальна, поскольку ее можно легко преобразовать во многие другие формы энергии.

Для того, чтобы электрическая энергия перемещала электроны и создавала поток тока по цепи, должна выполняться работа, то есть электроны должны перемещаться на некоторое расстояние по проводу или проводнику. Проделанная работа сохраняется в потоке электронов в виде энергии. Таким образом, «Работа» — это название, которое мы даем процессу энергии.

Таким образом, мы можем сказать, что Work и Energy фактически то же самое, что энергия может быть определена как «способность выполнять некоторую работу».Обратите внимание, что выполненная работа или переданная энергия одинаково применимы к механической или тепловой системе, как и к электрической системе. Это потому, что механическая, тепловая и электрическая энергии взаимозаменяемы.

Электрическая энергия: вольт

Как мы теперь знаем, энергия — это способность выполнять работу, при этом стандартной единицей, используемой для энергии (и работы), является Джоуль . Джоуль энергии определяется как энергия, расходуемая одним ампером на один вольт за одну секунду.Электрический ток возникает в результате движения электрического заряда (электронов) по цепи, но для перемещения заряда от одного узла к другому необходима сила, создающая работу по перемещению заряда, а это: напряжение .

Мы склонны думать о напряжении (В) как о существующем между двумя разными клеммами, точками или узлами в цепи или источнике питания от батареи. Но напряжение важно, поскольку оно обеспечивает работу, необходимую для перемещения заряда из одной точки в другую, в прямом или обратном направлении.Напряжение или разность потенциалов между двумя выводами или точками определяется как имеющее значение в один вольт, когда один джоуль энергии используется для перемещения одного кулона электрического заряда между этими двумя выводами.

Другими словами, Напряжение разность между двумя точками или выводами — это работа, необходимая в джоулей для перемещения одного кулоновского заряда из A в B. Следовательно, напряжение может быть выражено как:

Блок напряжения

Где: напряжение в вольтах, J — работа или энергия в джоулях, а C — заряд в кулонах.Таким образом, если J = 1 джоуль, C = 1 кулон, то V будет равно 1 вольт.

Электроэнергия Пример №1

Каково напряжение на клеммах аккумулятора, который расходует 135 джоулей энергии на перемещение 15 кулонов заряда по электрической цепи.

В этом примере мы видим, что каждый кулон заряда обладает энергией в 9 джоулей.

Электрическая энергия: ампер

Мы видели, что единицей электрического заряда является кулон , , и что поток электрического заряда по цепи используется для представления потока тока.Однако, поскольку символом кулона является буква «C», его можно спутать с символом емкости, который также является буквой «C».

Чтобы избежать этой путаницы, обычно для обозначения электрического заряда используется заглавная буква «Q» или строчная буква «q», обозначающая количество. Таким образом, Q = 1 кулон заряда или Q = 1Кл. Обратите внимание, что заряд Q может быть либо положительным, + Q, либо отрицательным, -Q, то есть избытком электронов или дырок.

Поток заряда в замкнутой цепи в форме электронов называется электрическим током .Однако использование выражения «поток заряда» подразумевает движение, поэтому, чтобы произвести электрический ток, заряд должен двигаться. Это затем приводит к вопросу о том, что заставляет заряд двигаться, и это делает наш старый друг Voltage сверху.

Таким образом, напряжение или разность потенциалов между двумя точками обеспечивает необходимую электрическую энергию для перемещения заряда по цепи в виде электрического тока. Следовательно, работа, выполняемая для перемещения заряда, обеспечивается разностью потенциалов, и если между двумя точками нет разности потенциалов, движение заряда отсутствует и, следовательно, не протекает ток.Фактический заряд без какого-либо потока или движения называется статическим электричеством.

Если движение заряда называется электрическим током, то мы можем правильно сказать, что ток — это скорость движения (или скорость потока) заряда, но сколько заряда представляет собой ток. Если мы выберем точку в цепи, любую точку и измерим количество заряда, которое проходит через эту точку ровно за одну секунду, это даст нам силу электрического тока в ампер , (A).

Таким образом, один ампер тока равен одному кулону заряда, который проходит через данную точку за одну единицу секунды, и чем больше заряда в секунду проходит через эту точку, тем больше будет ток. Тогда мы можем определить один ампер (А) электрического тока как равный одному кулону заряда в секунду. Итак, 1А = 1Кл / с

Ампер

Где: Q — заряд (в кулонах), а t — интервал во времени (в секундах), на котором движется заряд. Другими словами, электрический ток имеет как величина (величина заряда) и указанное направление, связанное с ней.

Обратите внимание, что обычно используемым символом электрического тока является заглавная буква «I» или маленькая буква «i», обозначающие силу. Это интенсивность или концентрация заряда, создающего поток электронов. Для постоянного постоянного тока обычно используется заглавная буква «I», тогда как для переменного тока, изменяющегося во времени, обычно используется строчная буква «i». Символ i (t) означает мгновенное значение тока в этот точный момент времени.

Иногда легче запомнить эту взаимосвязь с помощью изображения.Здесь три количества Q, I и t, наложенные в треугольник, представляют фактическое положение каждой величины в текущей формуле.

Ампер

Транспонирование стандартной формулы, приведенной выше, дает нам следующие комбинации одного и того же уравнения:

Электроэнергетический пример №2

1. Сколько тока проходит через цепь, если 900 кулонов заряда проходят через заданную точку за 3 минуты.

2.Через резистор протекает электрический ток силой 3 ампера. Сколько кулонов заряда пройдет через резистор за 90 секунд.

Электрическая энергия: ватт

Электрическая мощность является произведением двух величин: Напряжение и Ток , и поэтому может быть определена как скорость, с которой выполняется работа при затрате энергии. Ранее мы говорили, что напряжение обеспечивает работу, необходимую в Джоулях для перемещения одного кулоновского заряда от A к B, и что ток — это скорость движения (или скорость потока) заряда.Итак, как эти два определения связаны друг с другом.

Если напряжение (В) равно Джоулям на кулоны (V = Дж / Кл), а амперы (I) равны заряду ( кулонов, ) в секунду (A = Q / t), то мы можем определить электрическую мощность (P) как являясь совокупностью этих двух величин. Это связано с тем, что электрическая мощность также может быть равна напряжению, умноженному на амперы, то есть: P = V * I.

Ватт

Итак, мы видим, что электрическая мощность — это также скорость, с которой работа выполняется в течение одной секунды.То есть за одну секунду рассеивается один джоуль энергии. Поскольку электрическая мощность измеряется в ваттах (Вт), ее также необходимо измерять в Джоулей в секунду . Итак, мы можем правильно сказать, что: 1 ватт = 1 джоуль в секунду (Дж / с).

Электроэнергетика

1 ватт (Вт) = 1 джоуль в секунду (Дж / с)

Итак, если 1 ватт = 1 джоуль в секунду, отсюда следует, что: 1 джоуль энергии = 1 ватт за одну единицу времени, то есть: работа равна мощности, умноженной на время (V * I * t джоулей).Таким образом, электрическая энергия (проделанная работа) получается путем умножения мощности на время в секундах, в течение которого течет заряд (в форме тока). Таким образом, единицы электрической энергии зависят от единиц, используемых для электроэнергии и времени. Таким образом, если мы измеряем электрическую мощность в киловаттах (кВт), а время в часах (ч), то потребляемая электрическая энергия равна киловаттам * часам (Втч) или просто: киловатт-час (кВтч).

Электроэнергетический пример №3

Лампочка мощностью 100 Вт горит всего один час.Сколько джоулей электрической энергии израсходовано лампой.

Обратите внимание, что когда мы имеем дело с джоулями как единицей электрической энергии, их удобнее представлять в килоджоулях. Следовательно, ответ может быть дан как: 360 кДж.

Поскольку джоулей сами по себе являются малыми величинами, килоджоуль (кДж), тысячи джоулей, мегаджоуль (МДж), миллионы джоулей и даже гигаджоуль (ГДж), тысячи миллионов джоулей, — все это практические единицы электрической энергии.Таким образом, одна единица электроэнергии, эквивалентная одному киловатт-часу (кВтч), может быть определена как 3,6 мегаджоулей (МДж).

Аналогичным образом, поскольку ватт — это такое небольшое количество электроэнергии, киловатты (1 кВт = 1000 Вт) и мегаватты (1 МВт = 1 миллион ватт) обычно используются для определения выходной мощности электрического оборудования и приборов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *